РЕАКЦИЯ ⁷Li(¹⁸O, ¹⁷N)⁸Be И ПОТЕНЦИАЛ ВЗАИМОДЕЙСТВИЯ ЯДЕР ¹⁷N + ⁸Be

А. Т. Рудчик, Ю. М. Степаненко, А. А. Рудчик, О. А. Понкратенко, Е. И. Кощий, С. Кличевски, К. Русек, А. Будзановски, С. Ю. Межевич, Вал. Н. Пирнак, И. Сквирчиньска, Р. Сюдак, Б. Чех, А. Щурек, Я. Хоиньски, Л. Гловацка

Получены новые экспериментальные данные дифференциальных сечений реакции $^7\text{Li}(^{18}\text{O}, ^{17}\text{N})^8\text{Be}$ для основных состояний ядер ^8Be и ^{17}N , а также возбужденных состояний ядра ^{17}N при енергии $E_{\text{лаб}}(^{18}\text{O}) = 114$ МеВ. Экспериментальные данные проанализированы по методу связанных каналов реакций (МЗКР) для одно- и двухступенчатых передач нуклонов и кластеров. В МЗКР-расчетах для входного канала реакции использованы оптический потенциал, полученый из анализа данных упругого рассеяния ядер $^7\text{Li} + ^{18}\text{O}$, и спектроскопические амплитуды нуклонов и кластеров, вычисленные в рамках оболочечной модели. Определен оптический потенциал взаимодействия нестабильних ядер $^8\text{Be} + ^{17}\text{N}$ по экспериментальным данным реакции. Исследованы вклады различных одно- и двухступенчатых передач нуклонов и кластеров в сечения реакции $^7\text{Li}(^{18}\text{O}, ^{17}\text{N})^8\text{Be}$.

Ключевые слова: ядерные реакции, оптическая модель, метод связанных каналов реакций, фолдинг-модель, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.