⁷Li(¹⁸O, ¹⁷N)⁸Be REACTION AND THE ¹⁷N + ⁸Be-POTENTIAL

A. T. Rudchik, Yu. M. Stepanenko, A. A. Rudchik, O. A. Ponkratenko, E. I. Koshchy, S. Kliczewski, K. Rusek, A. Budzanowski, S. Yu. Mezhevych, Val. M. Pirnak, I. Skwirczyńska, R. Siudak, B. Czech, A. Szczurek, J. Choiński, L. Głowacka

Angular distributions of the ⁷Li(¹⁸O, ¹⁷N)⁸Be reaction were measured for the transitions to the ground states of ⁸Be and ¹⁷N and excited states of ¹⁷N at the energy $E_{lab}(^{18}O) = 114$ MeV. The data were analyzed with coupled-reaction-channels method for one- and two-step transfers of nucleons and clusters. In the analysis, the ⁷Li + ¹⁸O potential deduced in the analysis of the elastic ⁷Li + ¹⁸O-scattering data as well as shell-model spectroscopic amplitudes of transferred nucleons and clusters were used. Parameters of the ⁸Be + ¹⁷N potential were deduced using the reaction data. Contributions of different one- and two-step transfers in the ⁷Li(¹⁸O, ¹⁷N)⁸Be reaction cross-section was studied.

Keywords: nuclear reactions, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.