AAEPHA ®I3UKA

SANEPHA ®I3UKA TA EHEPTETHKA 2010, T. 11, Ne 3, c. 239 - 245

VK 539.14

THE EXCITATION OF AN INDEPENDENT-PARTICLE GAS
BY A TIME DEPENDENT POTENTIAL WELL

©2010 J.P.Blocki', A.G. Magner®, L S. Yatsyshyn

" 4. Soltan Institute for Nuclear Studies, Swierk/Otwock, Poland
? Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

The order-to-chaos transition in the dynamics of independent classical particles gas was studied by means of the
numerical simulations. The excitation of the gas for containers whose surfaces are rippled according to Legendre
polynomials P, P, P,, P,, P, was followed for ten periods of oscillations. Spheroidal deformations were also considered.

Poincare sections and Lyapunov exponents have been calculated showing different degrees of chaoticity depending on
the shape and amplitude of oscillations. For P, polynomial the reaction of a gas to the periodic container deformation is

mostly elastic as P, deformation especially for not very big deformations is almost like an integrable spheroid. For

other polynomials the situation is more or less chaotic with a chaoticity increasing with the increasing order of the

polynomial.
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Introduction

In recent years it became apparent that the
collective nuclear dynamics is very much related to
the nature of the nucleonic motion. If the nucleonic
motion is ordered the nucleus behaves like an elastic
solid whereas when it is chaotic the nucleus behaves
like a viscous fluid. The behaviour of the nucleus is
important in physical processes like fission or heavy
ion collisions where a great amount of the collective
energy is dissipated into a chaotic nucleonic motion.

In this paper we study the excitation of a classical
gas of independent particles in a container changing
its shape periodically. These studies are continuation
of studies where the excitation of the classical and
quantal gas were reported earlier [1 - 4]. In paper [3]
a systematic comparison was carried out between
quantal and classical computer simulations of the
excitation of independent particles in a time-
dependent potential well undergoing one cycle of the
oscillation. The results for five Legendre polynomial
deformations P,,P,,P,,P.,P, were compared with

the one body dissipation model in the form of the
wall formula [5]. These comparisons show that the
wall formula often reproduces the overall trend of
the numerical simulations but drastic deviations
especially at low deformation speeds are present.
We introduce, as before [2] the adiabaticity
parameter 77 being the ratio of the biggest wall

speed to the biggest speed of particles:
n=awR,/v,, ()

where « is the relative amplitude and @ is the

frequency for surface vibrations, R, 1is the
equilibrium radius parameter, v, is the Fermi

velocity of particles (all notations are specified in
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more details below). If one considers in classical
calculations low deformation speed corresponding to
the adiabaticity parameter [3] equal for instance to
17n=0.02 then for P, type of vibrations around

sphere with an amplitude o =0.2 one gets within
one period an average number of particle collisions
with the wall equal to about 36. The same number
for 7=0.6 is equal to 1.3. For n7=0.6 and

a =0.2 the angular velocity (in units where Fermi
velocity v, =1 and radius of the nucleus R, =1) is

equal to 3. So the time period is about 2 which
means that it corresponds to the time of the fastest
particles to cross the nucleus. In such a case within
one period particles do not have enough time to
recognize what is the shape of the container and
therefore independently on the shape the excitation
of the gas will be close to that given by the wall
formula.

The situation is different when one goes to longer
time evolution like ten periods of the oscillation.
Then the average number of particle collisions with
the wall in the same situation (P, deformation,
a=0.2, n=0.6) is equal to almost 18 and that
means that the gas is feeling the shape of the nucleus
it is moving in. Therefore for P, deformation which
is almost integrable the excitation of the gas after 10
oscillations is more than three times smaller than the
one obtained from the wall formula.

In all the cases where there is enough number of
particle collisions with the wall (more than about
ten) the ratio between the wall formula excitation
and the one obtained in numerical simulations equals
to 3—4. The same ratio for the P, deformation is

equal to 1.2-1.6 and for P, deformation which is
almost completely chaotic it is 0.94—1.14 and this
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means that in the wall formula there should be a
degree of chaoticity of a gas for a given shape taken
into account [6]. We emphasize that the friction
coefficient is determined through the average of the
energy rate <dE /dt > proportional to the change of
the energy AE for a large enough time Ar.
Therefore, the energy change AE for a larger
interval Atz of the time averaging measures more
precisely the friction coefficient.

The numerical simulations

In the present paper we report calculations
concerning the excitation of a gas of classical
particles undergoing ten cycles of the oscillations
around a deformed shape. The container is a sharp-
walled cavity of the infinite depth and the shape of
the cavity is defined by a time-dependent radius
R(6,t) given by:

R(0.1) = R,[ 1+, ()P, (cos0) + &, (1P, (cos) |/ A(1),
()

where A(¢) is a normalization factor ensuring

volume conservation and ¢,(¢f) ensures a fixed
position of the center of mass for odd multipolarities
n. P (cosé’) are Legendre polynomials and «,(¢) is

a periodic function of time:
a,(t)=a, +a,cos(wt), 3)

where ¢, is a static deformation around which the
system vibrates and «' is an amplitude of

vibrations. In addition to five Legendre polynomials:
P,P,P,P,P. we considered also a cavity whose

surface is given by:

(X +y* ) a0 +27 /(0 =1, 4)

where a(t)=R,[1+a, +acos (a)t)T/2 and
c(t) =R, I:l +a, + acos(a)t):l.

We start our oscillations from a maximum
displacement of the P  deformation equal to
a, +a,. The amplitude of the oscillations « is
taken as O‘W and this ensures that for

small « the r.m.s. deviation of the surface from the

sphere is the same for all multipolarities n. We
introduce, as before [2] the adiabaticity parameter 7

being the ratio of the biggest wall speed to the
biggest speed of particles:

n=awR,/v,. ®)
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The equation to the improved wall formula for the
relative-energy increase of the gas was derived in

[7]:
AE [ E,=C(I+3I'/8), (6)

where C is given in terms of the first two moments
of the initial velocity distribution: C = 2\;_02 /v; . The

bar means averaging in the phase space. For the
initial Fermi-gas velocity distribution one has

v_0=3vF /4 and vl =3v,’/5. In Eq. (6), I is an
integral over time and over the surface of the squares
of normal velocities of the surface elements dS :

(1) = [1/(701/)] [ ar §icas, 7)

where V' is the volume of the container. The
integral, Eq.(7), has to be in general evaluated
numerically.

For small amplitude vibrations around the sphere
one can use an approximate expression [1]:

AE/E,=t+7°/5, 8)

where 7= (3/4)an[wt - (1/2)sin2er)] .

In Fig. 1 the relative increase of the energy of the
gas of particles during ten periods of oscillations at
a, =0 and an amplitude a =0.1 is presented. The

upper two rows correspond to an adiabaticity
parameter 77 =0.1 and lower two rows to 7=0.6.

The corresponding vibrating shapes are indicated in
each picture. For the adiabaticity parameter 7 = 0.1

only the P, and P, vibrations behave in a dissipative

way following very nicely the wall formula (dashed
curves). For other shapes the excitation energy
follows the wall formula for no more than one
period of oscillations. This can be understood on the
basis of the number of particles collisions with the
wall. For these conditions the average number of
collisions during ten periods of oscillations is equal
to 35 which means that for one period it is 3.5. In
such a situation the gas during one period is not able
to recognize the shape it is moving in and to build
correlations between consecutive collisions.

In two lower lines of Fig. 1, one can see a strong
non-adiabatic effect in comparison with upper plots.
For the adiabaticity parameter 7 =0.6, the average

number of the particles collisions with the wall
during ten periods of oscillations is equal to about 7.
It means that the same number of collisions during
one period at 7=0.1 will be reached now in five

periods. This is the case for spheroidal (SPH) and
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Fig. 1. Relative excitation of a gas of particles AE with respect to the initial energy of the gas £, during ten periods of

oscillations around a spherical shape for six different shape deformations. The amplitude of the vibrations is o =0.1
and the adiabaticity parameter 77 =0.1 (upper two rows) and 7=0.6 (lower two rows). Solid lines indicate results of

the computer simulations and dashed ones are the wall formula predictions.

P, vibrations where calculations up to five periods is pretty much the same as presented in Fig. 1.
follow pretty well the wall formula. For shapes from Within this time, P and P, at 7=0.1 behave
P, up to P, the gas behaves in a dissipative way. however in a more dissipative way and the situation

In Fig. 2 the same is plotted but for ¢, =03 With spheroid and P at 7=0.6 is somewhat

which means that now we are looking for different.
oscillations around the deformed shape. The picture
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Fig. 2. The same as in Fig. 1 but for the vibrations around a deformed shape o, =0.3.

In Fig. 3 the excitation of the gas of particles at again is pretty much the same as for bigger
very slow motion of walls (77=0.02) is plotted. In  adiabaticity parameters 77 =0.1 (see Figs. 1 and 2).

upper two rows a vibration around a sphere With decreasing o at @, =0 one obtains more
(a, =0) and in lower two rows a vibration around a  ordering for each given multipolarity 7 .

deformed shape («,, =0.3) are shown. The picture
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Fig. 3. Relative excitation of a gas of particles AE with respect to the initial energy of the gas £, during ten periods of

oscillations around a spherical shape (two upper rows) and around a deformed shape ¢, = 0.3 (two lower rows) for six

different shape deformations. The amplitude of the vibrations is & =0.1 and the adiabaticity parameter 7 =0.02 . Solid

lines indicate results of the computer simulations and dashed ones are the wall formula predictions.

Poincare sections

In order to study the degree of chaoticity of
particles in different containers we first calculate
Poincare sections [2]. The Poincare sections are
generated in the following way: we split our shape in

the middle by an equatorial plane and every time the
trajectory crosses this plane we notice the distance
p from the symmetry axis and the corresponding

component of the velocity v, .

0.5

=0

-0.5

0.

06 o 08
p

Fig. 4. Poincare sections for six shapes under the consideration at the deformation « =0.05 (two lower rows) and
deformation « =0.4 (two upper rows). The Poincare sections are for projections of the angular momentum on the
symmetry axis K with respect to the maximal ones equal to 0.5.

In this way we get points in two-dimensional
phase space: (velocity v , position p). If the

motion is integrable the particle in the phase space
moves on a torus which intersecting with the
equatorial plane will give a regular curve in (p,v,)
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space. On the other hand if the motion is chaotic, the
points will fill the whole space (p,v,) in an

irregular way.

In Fig. 4 the Poincare sections for six shapes under
the consideration are presented. These sections are
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presented for a mean projection of the angular
momentum on the symmetry axis equal to 0.5 of the
maximal projection, which in units we use
(R,=Lv,.=1)isequalto p, . In each picture there
are ten initial conditions considered corresponding to
the initial p value spread equally between p, . =0.5
and p,  corresponding to the shape boundary at the
equatorial plane. The sections are presented for the
small deformation & =0.05 which corresponds to the
mean value for the oscillations around sphere with the
vibration amplitude equal 0.1 (two lower rows). The
two upper rows correspond to the deformation
a =0.4. For lower value of the deformation & =0.05

the spheroid and P, shapes are fully ordered and P
and P, shapes are fully chaotic. For the P, and P,

shapes the situation is somewhere in between. It
confirms the fact that for 7=0.1 (see Fig. 1) the

excitation for P, and P, vibrations is much smaller

min

than the one obtained with the wall formula whereas
for P and P, vibrations the calculated excitations

follow very nicely the wall formula. With decreasing

the deformation o, the Poincare sections for all
multipolarities # tend to those of the spherical shape.

For bigger deformation the situation is ordered
only for spheroid and all other shapes are chaotic.
However, surprisingly the P, shape shows a sign of
order. For increasing K one finds more ordering for
each Legendre polynomial degree n because of
diminishing of the phase space volume accessible
for classical motion.

Lyapunov exponents

For more quantitative studies of the chaotic
behaviour the method of Lyapunov exponents A
have been used [8]. In this method one looks for an
exponential divergence in time for two trajectories
with nearly the same initial conditions. For N -
dimensional phase space there are N maximal
Lyapunov exponents A out of which some of them
can be positive or negative. In the case of regular
motion all of the Lyapunov exponents A are equal
to zero.
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Fig. 5. Lyapunov exponents A

max
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N

20 40 60 80 100
N

for six shapes under the consideration at deformation & =0.05 (lower two rows) and

deformation & =0.4 (upper two rows). The projection of the angular momentum on the symmetry axis K =0 .

Once the positive Lyapunov exponents A are

max

presented in Figs. 5 and 6 as their largest values one
controls the exponential instability leading to a
chaos. In Fig. 5 these maximal Lyapunov exponents
are plotted for the six shapes under the consideration
at the deformation « =0.05 (lower two rows) and
deformation a =0.4 (upper two rows). All the
Lyapunov exponents are calculated for particles with
the projection of the angular momentum K =0 on
the symmetry axis. For the deformation « =0.05
the situation is very much ordered (almost all the

SNEPHA ®I3UKA TA EHEPTETUKA T.11, Ne 3 2010

Lyapunov exponents are equal to zero) and this
confirms what one can see in Poincare sections (see
Fig. 4). In the P, and P, shapes at this deformation
one has partially ordered and partially chaotic (some
of the Lyapunov exponents are equal to zero and
others have a finite positive value) and this is also
confirmed by the Poincare sections (see Fig. 4). In
the P, and P, shapes the dynamics seems to be fully
chaotic (all the Lyapunov exponents have some
finite positive values). This is also presented by the
Poincare sections. For the deformation  =0.4 the
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Fig. 6. The same as in Fig. 5 but for the projection of the angular momentum
on the symmetry axis K =0.5 of the maximal projection.

situation only in the spheroidal (SPH) shape is
ordered, i.e. all the Lyapunov exponents are
vanishing. For all other shapes, one finds a more
chaotic behavior, and it is even chaotic for P, shape

where Poincare sections show some trace of chaos.
However situations presented in Figs. 4 and 5 are
not strictly comparable as they refer to the two
different projections of the angular momentum on
the symmetry axis K =0 and K =0.5. The maximal
Lyapunov exponents are the smaller the larger K
for the given multipolarity 7 in line of the features
of the Poincare sections.

When one goes to the Lyapunov exponents
calculated for particles with K =0.5 (Fig. 6) then all
the conclusions from above remain valid except that
now in P, shape at the deformation a=04 the
situation is partly chaotic and partly ordered which
confirms what one can see in the Poincare sections (see
Fig. 4).

Conclusions

We have extended the earlier research [3] to
longer time evolutions (ten periods of oscillations)

which allow to have enough number of the particle
collisions with the walls and in this way to recognize
the shape of the container for the gas it is moving in.
When one goes to a longer time evolution, and
oscillation beyond a small amplitude around the
sphere one should be careful in applying a simplified
wall formula [Eq. (11) in [1]] calculating the proper
integral (7). Unfortunately, one is losing a general
simplicity which under the proper rescaling of the
amplitudes of vibrations gives the same energy
dissipated for all shapes considered.

Looking at Figs. 1, 2 and 3 one could say that the
formula is reproducing the
simulations pretty well in the wide range of the wall
speeds and especially for higher multipolarities. This
agreement is the better the larger multipolarity for
the same all other parameters. The correlation
between the dissipative or elastic behaviour of the
system and the degree of the chaoticity is well
visible when one looks into the Poincare sections
and Lyapunov exponents.

wall computer
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3BY/UKEHHS I'A3Y HE3AJIEZKHUX YACTHHOK
3AJIEZKHOIO BIJI YACY NOTEHHIAJIBHOIO SIMOIO

S1. II. Baoubkuii, O. I'. Maruep, 1. C. Sluummx

[Mepexin “HOpsAOK - Xaoc” y JAWHAMIIl HE3aIeKHUX KIACHYHMX YACTUHOK Ta3y BHBYABCS 32 JIONOMOIOIO
YHCEIBHOTO MOJCTIOBaHH. 30yKCHHS ra3y JUis KOMIpOK, MOBEPXHS SKUX JehopMyBaiach 3a IOJIHOMIATbHOIO
3anexxHicTio (noninomu Jlexanapa P, B, P, P, P, ), ciocTepiraauice IpoTsAroM AecATH IepiolliB KoluBaHb. Po3risiHyTo

Takok cepoimanbHi nepopmamnii. Oduncneni nmepepizu Ilyankape Tta excrioHeHTH JIAIMyHOBa MOKa3zand pi3Hi CTYICHI
Xa0THYHOCTI, 1110 3aJIeXkKaTh Bif ()OpMH IOBEPXHI Ta aMIUIITy 1 KOJAMBaHb. 11 P, MONIHOMIialbHOI 3a1€XKHOCTI peaKIis

rasy Ha mepioandHi aedopmariii KOMIPKM € HaiOUIbII MpyKHOIO, TOMy 1IN0 F, nedopmamis mpu gyXKe Majux
nedopmariisx Maike Taka K cama, K 1 aJst iHTerpoBanoro cepoina. Jist iHIINX MOJIHOMIB CHTYAIliS € XaOTHYHOIO 3

XAO0THYHICTIO, IO 3pOCTAE 31 301IBIIEHHIM MOPSAKY HOTIHOMA.
Knrouogi crosa: oMHOTITbHA AUCHIIALLIS, TIEPEXOIN “TIOPSAAOK - Xa0C”, KOJEKTUBHA sifiepHa TMHAMIKA.

BO3BYKJIEHHUE T'A3A HE3ABUCHUMBIX YACTHI]
3ABACSIIEN OT BPEMEHU IMOTEHIIUMAJBHOM SIMOM

5. I1. Baouxkuii, A.I'. Marnep, U. C. Aubimun

Ilepexon “Hopsnok - Xaoc” B JMHAMHKE HE3aBHCHMBIX KJIACCMYECKMX 4YaCTHI[ Ia3a M3ydaJicd € HOMOLIBIO
YHCJIEHHOTO MOJENUpPOBaHusA. Bo30OyxaeHus rasza Juisd g4€eK, IOBEPXHOCTb KOTOPBIX Je(OpMHUpOBAIach 110
MOJIMHOMHUANBHOM 3aBucuMocTu (nonuHoMsl Jlexannpa P, P, P, P, F,), HaOmonanuck Ha MNPOTSHKEHHH AECATH
nepuosioB Konebanuil. Paccmortpensl Takxke cdepounaneHele nedopmanuu. Beruucnennsie ceuenus Ilyankape u
SKCHOHEHTHI JIAMyHOBa MOKa3ajld Pa3IMYHbIE CTENEHH XAaOTHYHOCTH, KOTOPBIE 3aBHCAT OT (OPMBI TMOBEPXHOCTH H

aMIUIUTY bl KoneOanuid. [lnst P, NOJIMHOMUANBbHON 3aBUCHMOCTH PEakuus rasa Ha NepHoaudeckue aedopManuu
sA4elKy sBIsIeTcs Haubolliee yIpyroi, IoToMy uro P, AedopManus IIpU OYeHb MajlbIX AehOopMaLUAX Takas 5ke, KaKk U

JUII WHTETpHpOBaHHOTO cepomma. s Opyrux IMOJIWHOMOB CHTyalWs SBISETCS XAOTHYECKOM C XaOTHYHOCTEIO,
KOTOpast BO3pacTacT C YBEIMICHUEM TIOPSIKA TIOJIMHOMA.
Kniouesvie cnosa: oqHOTENBHAS] TUCCUTIAIIHS, TIEPEXOIBI “TMOPSIOK - Xa0C”’, KOJUIGKTUBHAS sIIEpPHAs THHAMHUKA.
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