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The order-to-chaos transition in the dynamics of independent classical particles gas was studied by means of the 
numerical simulations. The excitation of the gas for containers whose surfaces are rippled according to Legendre 
polynomials  was followed for ten periods of oscillations. Spheroidal deformations were also considered. 
Poincare sections and Lyapunov exponents have been calculated showing different degrees of chaoticity depending on 
the shape and amplitude of oscillations. For  polynomial the reaction of a gas to the periodic container deformation is 
mostly elastic as  deformation especially for not very big deformations is almost like an integrable spheroid. For 
other polynomials the situation is more or less chaotic with a chaoticity increasing with the increasing order of the 
polynomial.  
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Introduction 
 

In recent years it became apparent that the 
collective nuclear dynamics is very much related to 
the nature of the nucleonic motion. If the nucleonic 
motion is ordered the nucleus behaves like an elastic 
solid whereas when it is chaotic the nucleus behaves 
like a viscous fluid. The behaviour of the nucleus is 
important in physical processes like fission or heavy 
ion collisions where a great amount of the collective 
energy is dissipated into a chaotic nucleonic motion.  

In this paper we study the excitation of a classical 
gas of independent particles in a container changing 
its shape periodically. These studies are continuation 
of studies where the excitation of the classical and 
quantal gas were reported earlier [1 - 4]. In paper [3] 
a systematic comparison was carried out between 
quantal and classical computer simulations of the 
excitation of independent particles in a time-
dependent potential well undergoing one cycle of the 
oscillation. The results for five Legendre polynomial 
deformations  were compared with 
the one body dissipation model in the form of the 
wall formula [5]. These comparisons show that the 
wall formula often reproduces the overall trend of 
the numerical simulations but drastic deviations 
especially at low deformation speeds are present. 
We introduce, as before [2] the adiabaticity 
parameter 

2 3 4 5 6P P P P P, , , ,

η  being the ratio of the biggest wall 
speed to the biggest speed of particles: 

 

0 FR vη αω= / ,                             (1) 
 
where α  is the relative amplitude and ω  is the 
frequency for surface vibrations, 0R  is the 
equilibrium radius parameter, Fv  is the Fermi 
velocity of particles (all notations are specified in 

more details below). If one considers in classical 
calculations low deformation speed corresponding to 
the adiabaticity parameter [3] equal for instance to 

0 02η = .  then for  type of vibrations around 
sphere with an amplitude 

2P
0 2α = .  one gets within 

one period an average number of particle collisions 
with the wall equal to about 36. The same number 
for 0 6η = .  is equal to 1 3 . For . 0 6η = .  and 

0 2α = .  the angular velocity (in units where Fermi 
velocity 1Fv =  and radius of the nucleus 0R 1= ) is 
equal to . So the time period is about  which 
means that it corresponds to the time of the fastest 
particles to cross the nucleus. In such a case within 
one period particles do not have enough time to 
recognize what is the shape of the container and 
therefore independently on the shape the excitation 
of the gas will be close to that given by the wall 
formula.  

3 2

The situation is different when one goes to longer 
time evolution like ten periods of the oscillation. 
Then the average number of particle collisions with 
the wall in the same situation (  deformation, 2P

0 2α = . , 0 6η = . ) is equal to almost 18  and that 
means that the gas is feeling the shape of the nucleus 
it is moving in. Therefore for  deformation which 
is almost integrable the excitation of the gas after 10  
oscillations is more than three times smaller than the 
one obtained from the wall formula.  

2P

In all the cases where there is enough number of 
particle collisions with the wall (more than about 
ten) the ratio between the wall formula excitation 
and the one obtained in numerical simulations equals 
to 3 4− . The same ratio for the  deformation is 
equal to 1

3P
2 1 6. − .  and for  deformation which is 

almost completely chaotic it is  and this 
6P

0 94 1 14. − .
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means that in the wall formula there should be a 
degree of chaoticity of a gas for a given shape taken 
into account [6]. We emphasize that the friction 
coefficient is determined through the average of the 
energy rate  proportional to the change of 
the energy 

dE dt< / >
EΔ  for a large enough time tΔ . 

Therefore, the energy change EΔ  for a larger 
interval  of the time averaging measures more 
precisely the friction coefficient.  

tΔ

 
The numerical simulations 

 
In the present paper we report calculations 

concerning the excitation of a gas of classical 
particles undergoing ten cycles of the oscillations 
around a deformed shape. The container is a sharp-
walled cavity of the infinite depth and the shape of 
the cavity is defined by a time-dependent radius 

( )R tθ,  given by: 
 

( ) ( )0 1( )R t cos cos, = + /⎡ ⎤⎣ ⎦1 ( )tθ1 ( )n nR t Pθ α+

)t

( )t Pθ α ,λ  
(2) 

where (λ  is a normalization factor ensuring 
volume conservation and 1(t)α  ensures a fixed 
position of the center of mass for odd multipolarities 
n. ( )nP cosθ  are Legendre polynomials and (n )tα  is 
a periodic function of time: 
 

( )0
n stt s( ) nco tα α α= + ω ,                 (3) 

 
where stα  is a static deformation around which the 
system vibrates and 0

nα  is an amplitude of 
vibrations. In addition to five Legendre polynomials: 

 we considered also a cavity whose 
surface is given by: 

2 3P P, , 4P P5 6P, ,

2 2x y a⎛ ⎞
⎜ ⎟
⎝ ⎠

+ /

0( ) 1a t R= +

 
2 2( ) 1,t z+ / =2 ( )c t

( )os t

              (4) 
 

where  and 
1 2

st cα α ω
− /

+⎡⎣

(
⎤⎦

)0( )c t R 1 st coα α= + + s tω⎡ ⎤⎣ ⎦ .  

We start our oscillations from a maximum 
displacement of the  deformation equal to nP

0
st nα α+ . The amplitude of the oscillations 0

nα  is 
taken as (2 1)nα + / 5  and this ensures that for 
small α  the r.m.s. deviation of the surface from the 
sphere is the same for all multipolarities n. We 
introduce, as before [2] the adiabaticity parameter η  
being the ratio of the biggest wall speed to the 
biggest speed of particles: 

 

0 FR vη αω= / .                            (5) 

The equation to the improved wall formula for the 
relative-energy increase of the gas was derived in 
[7]: 
 

( )2
0 3 8E E C I IΔ / = + / ,                 (6) 

 
where  is given in terms of the first two moments 
of the initial velocity distribution: 

C
2 2

002C vv= / . The 
bar means averaging in the phase space. For the 
initial Fermi-gas velocity distribution one has 

0 3 F 4v v= /  and 22
0 3 Fv v 5= / . In Eq. (6),  is an 

integral over time and over the surface of the squares 
of normal velocities of the surface elements : 

I

dS
 

( ) 2
0 0

( ) 1
t

I t v V dt n dS⎡ ⎤= / ,⎣ ⎦ ∫ ∫               (7) 
 
where  is the volume of the container. The 
integral, Eq. (7), has to be in general evaluated 
numerically.  

V

For small amplitude vibrations around the sphere 
one can use an approximate expression [1]: 

 
2

0 5E E τ τΔ / = + / ,                       (8) 
 
where [ ](3 4) (1 2) (2 )t sin tτ αη ω ω= / − / .  

In Fig. 1 the relative increase of the energy of the 
gas of particles during ten periods of oscillations at 

0stα =  and an amplitude 0 1α = .  is presented. The 
upper two rows correspond to an adiabaticity 
parameter 0 1η = .  and lower two rows to 0 6η = .

0 1

. 
The corresponding vibrating shapes are indicated in 
each picture. For the adiabaticity parameter η = .  
only the  and  vibrations behave in a dissipative 
way following very nicely the wall formula (dashed 
curves). For other shapes the excitation energy 
follows the wall formula for no more than one 
period of oscillations. This can be understood on the 
basis of the number of particles collisions with the 
wall. For these conditions the average number of 
collisions during ten periods of oscillations is equal 
to 35 which means that for one period it is 3.5. In 
such a situation the gas during one period is not able 
to recognize the shape it is moving in and to build 
correlations between consecutive collisions. 

5 6PP

In two lower lines of Fig. 1, one can see a strong 
non-adiabatic effect in comparison with upper plots. 
For the adiabaticity parameter 0 6η = . , the average 
number of the particles collisions with the wall 
during ten periods of oscillations is equal to about 7. 
It means that the same number of collisions during 
one period at 0 1η = .  will be reached now in five 
periods.  This  is  the  case  for spheroidal (SPH) and  
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Fig. 1. Relative excitation of a gas of particles EΔ  with respect to the initial energy of the gas  during ten periods of 
oscillations around a spherical shape for six different shape deformations. The amplitude of the vibrations is 

0E
0 1α = .  

and the adiabaticity parameter 0 1η = .  (upper two rows) and 0 6η = .  (lower two rows). Solid lines indicate results of 
the computer simulations and dashed ones are the wall formula predictions. 
 

2P

3P

 vibrations where calculations up to five periods 
follow pretty well the wall formula. For shapes from 

 up to  the gas behaves in a dissipative way. 6P
In Fig. 2 the same is plotted but for 0 3stα = .  

which means that now we are looking for 
oscillations around the deformed shape. The picture 

is pretty much the same as presented in Fig. 1. 
Within this time,  and  at 3P 4P 0 1η = .

6

 behave 
however in a more dissipative way and the situation 
with spheroid and  at 2P 0η = .  is somewhat 
different.

 

 
Fig. 2. The same as in Fig. 1 but for the vibrations around a deformed shape 0 3stα = . . 

 
In Fig. 3 the excitation of the gas of particles at 

very slow motion of walls ( 0 02η = . ) is plotted. In 
upper two rows a vibration around a sphere 
( 0stα = ) and in lower two rows a vibration around a 
deformed shape ( 0 3stα = . ) are shown. The picture 

again is pretty much the same as for bigger 
adiabaticity parameters 0 1η = .  (see Figs. 1 and 2). 
With decreasing α  at 0stα =  one obtains more 
ordering for each given multipolarity . n
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Fig. 3. Relative excitation of a gas of particles EΔ  with respect to the initial energy of the gas  during ten periods of 
oscillations around a spherical shape (two upper rows) and around a deformed shape 

0E
0 3stα = .  (two lower rows) for six 

different shape deformations. The amplitude of the vibrations is 0 1α = .  and the adiabaticity parameter 0 02η = . . Solid 
lines indicate results of the computer simulations and dashed ones are the wall formula predictions.  
 

Poincare sections 
 

In order to study the degree of chaoticity of 
particles in different containers we first calculate 
Poincare sections [2]. The Poincare sections are 
generated in the following way: we split our shape in 

the middle by an equatorial plane and every time the 
trajectory crosses this plane we notice the distance 
ρ  from the symmetry axis and the corresponding 
component of the velocity vρ .  

 

 
Fig. 4. Poincare sections for six shapes under the consideration at the deformation 0 05α = .  (two lower rows) and 
deformation 0 4α = .  (two upper rows). The Poincare sections are for projections of the angular momentum on the 
symmetry axis K  with respect to the maximal ones equal to 0.5.  
 

In this way we get points in two-dimensional 
phase space: (velocity vρ , position ρ ). If the 
motion is integrable the particle in the phase space 
moves on a torus which intersecting with the 
equatorial plane will give a regular curve in ( )vρρ,  

space. On the other hand if the motion is chaotic, the 
points will fill the whole space ( )vρρ,  in an 
irregular way.  

In Fig. 4 the Poincare sections for six shapes under 
the consideration are presented. These sections are 
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presented for a mean projection of the angular 
momentum on the symmetry axis equal to 0.5 of the 
maximal projection, which in units we use 
( ) is equal to 0 1 FR v= , =1 maxρ . In each picture there 
are ten initial conditions considered corresponding to 
the initial ρ  value spread equally between 0 5minρ = .  
and maxρ  corresponding to the shape boundary at the 
equatorial plane. The sections are presented for the 
small deformation 0 05α = .  which corresponds to the 
mean value for the oscillations around sphere with the 
vibration amplitude equal 0.1 (two lower rows). The 
two upper rows correspond to the deformation 

0 4α = . . For lower value of the deformation 0 05α = .
5P

3P 4P

 
the spheroid and  shapes are fully ordered and  
and  shapes are fully chaotic. For the  and  
shapes the situation is somewhere in between. It 
confirms the fact that for 

2P

6P

0 1η = .  (see Fig. 1) the 
excitation for  and  vibrations is much smaller 
than the one obtained with the wall formula whereas 
for  and  vibrations the calculated excitations 
follow very nicely the wall formula. With decreasing 

the deformation 

3P 4P

5P 6P

α , the Poincare sections for all 
multipolarities  tend to those of the spherical shape.  n

For bigger deformation the situation is ordered 
only for spheroid and all other shapes are chaotic. 
However, surprisingly the  shape shows a sign of 
order. For increasing  one finds more ordering for 
each Legendre polynomial degree  because of 
diminishing of the phase space volume accessible 
for classical motion.  

4P
K

n

 
Lyapunov exponents 

 
For more quantitative studies of the chaotic 

behaviour the method of Lyapunov exponents Λ  
have been used [8]. In this method one looks for an 
exponential divergence in time for two trajectories 
with nearly the same initial conditions. For N -
dimensional phase space there are N  maximal 
Lyapunov exponents Λ  out of which some of them 
can be positive or negative. In the case of regular 
motion all of the Lyapunov exponents  are equal 
to zero.  

Λ

 

 
Fig. 5. Lyapunov exponents  for six shapes under the consideration at deformation maxΛ 0 05α = .  (lower two rows) and 
deformation 0 4α = .  (upper two rows). The projection of the angular momentum on the symmetry axis K . 0=

 
Once the positive Lyapunov exponents maxΛ  are 

presented in Figs. 5 and 6 as their largest values one 
controls the exponential instability leading to a 
chaos. In Fig. 5 these maximal Lyapunov exponents 
are plotted for the six shapes under the consideration 
at the deformation 0 05α = .

4
 (lower two rows) and 

deformation 0α = .  (upper two rows). All the 
Lyapunov exponents are calculated for particles with 
the projection of the angular momentum 0K =  on 
the symmetry axis. For the deformation 0 05α = .  
the situation is very much ordered (almost all the 

Lyapunov exponents are equal to zero) and this 
confirms what one can see in Poincare sections (see 
Fig. 4). In the  and  shapes at this deformation 
one has partially ordered and partially chaotic (some 
of the Lyapunov exponents are equal to zero and 
others have a finite positive value) and this is also 
confirmed by the Poincare sections (see Fig. 4). In 
the  and  shapes the dynamics seems to be fully 
chaotic (all the Lyapunov exponents have some 
finite positive values). This is also presented by the 
Poincare sections.  For  the  deformation 

3P 4P

5P 6P

0 4α = .  the  
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Fig. 6. The same as in Fig. 5 but for the projection of the angular momentum 

on the symmetry axis 0 5K = .  of the maximal projection. 
 
situation only in the spheroidal (SPH) shape is 
ordered, i.e. all the Lyapunov exponents are 
vanishing. For all other shapes, one finds a more 
chaotic behavior, and it is even chaotic for  shape 
where Poincare sections show some trace of chaos. 
However situations presented in Figs. 4 and 5 are 
not strictly comparable as they refer to the two 
different projections of the angular momentum on 
the symmetry axis  and . The maximal 
Lyapunov exponents are the smaller the larger  
for the given multipolarity  in line of the features 
of the Poincare sections. 

4P

0K = 0 5K = .
K

n

When one goes to the Lyapunov exponents 
calculated for particles with  (Fig. 6) then all 
the conclusions from above remain valid except that 
now in  shape at the deformation 

0 5K = .

4P 0 4α = .  the 
situation is partly chaotic and partly ordered which 
confirms what one can see in the Poincare sections (see 
Fig. 4).  

Conclusions 
 

We have extended the earlier research [3] to 
longer time evolutions (ten periods of oscillations) 

which allow to have enough number of the particle 
collisions with the walls and in this way to recognize 
the shape of the container for the gas it is moving in. 
When one goes to a longer time evolution, and 
oscillation beyond a small amplitude around the 
sphere one should be careful in applying a simplified 
wall formula [Eq. (11) in [1]] calculating the proper 
integral (7). Unfortunately, one is losing a general 
simplicity which under the proper rescaling of the 
amplitudes of vibrations gives the same energy 
dissipated for all shapes considered.  

Looking at Figs. 1, 2 and 3 one could say that the 
wall formula is reproducing the computer 
simulations pretty well in the wide range of the wall 
speeds and especially for higher multipolarities. This 
agreement is the better the larger multipolarity for 
the same all other parameters. The correlation 
between the dissipative or elastic behaviour of the 
system and the degree of the chaoticity is well 
visible when one looks into the Poincare sections 
and Lyapunov exponents.  
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ЗБУДЖЕННЯ  ГАЗУ  НЕЗАЛЕЖНИХ  ЧАСТИНОК  

ЗАЛЕЖНОЮ ВІД  ЧАСУ  ПОТЕНЦІАЛЬНОЮ  ЯМОЮ  
 

Я. П. Блоцький,  О. Г. Магнер, І. С. Яцишин 
 

Перехід “порядок - хаос” у динаміці незалежних класичних частинок газу вивчався за допомогою 
чисельного моделювання. Збудження газу для комірок, поверхня яких деформувалась за поліноміальною 
залежністю (поліноми Лежандра ), спостерігались протягом десяти періодів коливань. Розглянуто 
також сфероїдальні деформації. Обчислені перерізи Пуанкаре та експоненти Ляпунова показали різні ступені 
хаотичності, що залежать від форми поверхні та амплітуди коливань. Для  поліноміальної залежності реакція 
газу на періодичні деформації комірки є найбільш пружною, тому що  деформація при дуже малих 
деформаціях майже така ж сама, як і для інтегрованого сфероїда. Для інших поліномів ситуація є хаотичною з 
хаотичністю, що зростає зі збільшенням порядку полінома.  
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Ключові слова: однотільна дисипація, переходи “порядок - хаос”, колективна ядерна динаміка. 
 

ВОЗБУЖДЕНИЕ  ГАЗА  НЕЗАВИСИМЫХ  ЧАСТИЦ  
ЗАВИСЯЩЕЙ  ОТ  ВРЕМЕНИ  ПОТЕНЦИАЛЬНОЙ  ЯМОЙ 

 
Я. П. Блоцкий,  А. Г. Магнер,  И. С. Яцышин 

 
Переход “порядок - хаос” в динамике независимых классических частиц газа изучался с помощью 

численного моделирования. Возбуждения газа для ячеек, поверхность которых деформировалась по 
полиномиальной зависимости (полиномы Лежандра 2 3 4 5 6P P P P P, , , , ), наблюдались на протяжении десяти 
периодов колебаний. Рассмотрены также сфероидальные деформации. Вычисленные сечения Пуанкаре и 
экспоненты Ляпунова показали различные степени хаотичности, которые зависят от формы поверхности и 
амплитуды колебаний. Для  полиномиальной зависимости реакция газа на периодические деформации 
ячейки является наиболее упругой, потому что  деформация при очень малых деформациях такая же, как и 
для интегрированного сфероида. Для других полиномов ситуация является хаотической с хаотичностью, 
которая возрастает с увеличением порядка полинома. 
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Ключевые слова: однотельная диссипация, переходы “порядок - хаос”, коллективная ядерная динамика. 
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