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We derived the semiclassical trace formulas for the level density as sums over periodic-orbit families and isolated
orbits within the improved stationary phase method. Averaged level-density shell corrections and shell-structure
energies are continuous through all symmetry-breaking (bifurcation) points with the correct asymptotics of the standard
stationary phase approach accounting for continuous symmetries. We found enhancement of the nuclear shell structure
near bifurcations in the superdeformed region. Our semiclassical results for the averaged level densities with the gross-
shell and more thin-shell structures and the energy shell corrections for critical deformations are in good agreement with
the quantum calculations for several single-particle Hamiltonians, in particular for the potentials with a sharp spheroidal
shape. Enhancement of the shell structure owing to bifurcations of the shortest 3-dimensional orbits from equatorial

orbits is responsible for the second well of fission barrier in a superdeformation region.
Keywords: nuclear shell structure, fission barriers, nuclear deformations, energy shell corrections, semiclassical

periodic orbit theory, quantum and classical chaos.
Introduction

Many remarkable phenomena like the nuclear
fission, stability of deformed nuclei and superheavy
element production were described within the shell-
correction method (SCM) suggested originally by
Vilen Mitrofanovich Strutinsky [1, 2]. The shell
structure of nuclei within this macroscopic-
microscopic model is measured by the energy shell-
structure component J6E for a given deformed
nuclear shape, see also [3, 4]. It is associated with a
non-homogenuity of the single-particle (s.p.) energy-
level distribution near the Fermi surface. According
to the SCM, nuclei are stable at a deformation for
which the Fermi energy corresponds to the minimum
of the s.p. level density and therefore, approximately
to the energy shell correction OE .

The periodic orbit (PO) theory (POT) is a nice
tool for studying analytically within the SCM the
correspondence between classical and quantum
mechanics and, in particular, the interplay of
deterministic = chaos and quantum-mechanical
behavior [5 - 12]. But also for systems with the
integrable or mixed classical dynamics, the POT
leads to a deeper understanding of the origin of shell
structure in finite fermionic systems from such
different areas as the nuclear, metallic cluster or
mesoscopic-semiconductor physics [5 - 17]. The
POT is the analytical background of the SCM, in
particular, for explanation of the famous double-
humped fission barriers and isomer states in the
superdeformed region. For any potential well, the
s.p. level-density and energy shell corrections can be
related to an existence of POs by the POT, and near
the Fermi surface, they are responsible, in particular,
for double-humped structure of fission barriers.
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Bifurcations of POs may have significant effects,
e.g., in connection with the so called
“superdeformations™ of atomic nuclei [8 - 16]. In
the semiclassical trace formulae that connect the
quantum-mechanical density of states with a sum
over the POs (or their families) in the classical
system, divergences arise at critical points where
bifurcations of POs occur or where symmetry
breaking (or restoring) transitions take place. At
these points the standard stationary-phase
approximation, used in the semiclassical evaluation
of the trace integrals, breaks down. Various ways of
avoiding these divergences have been studied with
employing the uniform approximations [12 - 16].
Here we discuss the so called improved stationary-
phase method (improved SPM, or shortly ISPM) for
the evaluation of the trace integrals in the phase-
space representation, based on the studies in [14 -
16]. Away from the critical points, our results reduce
asymptotically to the extended Gutzwiller trace
formula [6, 7, 12]. For instance, they become
identical to those of Berry and Tabor approach for
the leading-order families of POs in the case of
integrable systems [12].

The main purpose of the present talk devoted to
the memory of V. M. Strutinsky is to report on the
extension of the semiclassical approach suggested in
[6, 7] to the spheroidal cavity, which may be taken
as a simple and realistic enough model for a
deformed strongly nucleus [8], and to specify the
role of orbit bifurcations in the shell structure
responsible for the superdeformation [8, 14, 15]. The
enhancement of the shell structure owing to the
bifurcations of the three-dimensional (3D) POs from
equatorial (EQ) ones by using the spheroidal cavity
model was predicted in [8]. We applied the ISPM
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[14 - 16] for the bifurcating orbits and succeeded
quantitatively in reproducing the superdeformed
shell structure within the POT, hereby observing this
considerable enhancement of the shell-structure
amplitude near the bifurcation points. Therefore,
following Ref. [8], in [14, 15] we confirm the
original idea of V. M. Strutinsky. The ISPM answers
approximately within the POT to Strutinsky’s
questions [8 - 11]: Why are nuclei deformed and

what is the deep reason of the double—humpedl

dr'd
g(e)=Y.0(c—¢) =
Zi: ;j (27n)
where O -function  describes the  energy
conservation, ® ., is the action phase,
() or= SCT (l",l’",é‘) —p"(l'"—l"),
Ser = [ drp(r) )

is the action along the classical trajectory CT in the
potential well of the Hamiltonian H (r,p). u, is

the Maslov phase associated with the number of
caustic and turning points of the catastrophe theory
by Maslov&Fedoryuk [16]. In Eq. (1), 3., (p’.p")
is the Jacobian of transformation from the
perpendicular, p’ , at the initial Cartesian coordinate
r' to the final, p’, momentum at r"of a CT.

Separating a short trajectory without reflections
from the potential boundary one may present
approximately the level density g(&) (1) in terms of

the sum of smooth partg,..(¢) of the extended

Thomas - Fermi model [12] and its oscillating
component 6g_,(&),
8(&) =g (£)+0g,,(8). (3)

The second term can be calculated by using the
stationary phase method (SPM) for the asymptotical
(k.R>1) evaluation of the integrals through the

SPM conditions,
[i
8p "

a _ n_ N
(%q)w} =(p p) =0, “4)

*

(DCTJ = (l"—r")* =0,

which are just the definition of POs (%, is the Fermi
momentum in units of 7, R is a size of the nucleus).
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barrier of fission, first of all the existence of its
second potential well?

The phase space trace formula and ISPM

The level density g(g&) is obtained from the
semiclassical Green’s function by taking the
imaginary part of its trace in phase space variables,
see [16], also for references therein,

B (o= (") 150 (001 o0 30T | )

Now, we describe the reason for divergences and
discontinuities of the oscillation density amplitudes
in the standard SPM (or SSPM) at the bifurcation
potential parameter where a PO transfers into the
same and a newborn of the isolated PO or the PO
family. These singularities occur owing to the
second-order expansion of the action phase @, as
function of the phase-space integration variable
E={r',p"} in Eq. (1) near the stationary phase-
space point £=¢  with an extension of the
integration limits in £ of Eq. (1) to the too. In order
to solve these problems, we found that the
bifurcation point is similar to the caustic singularity
considered by Fedoryuk within a catastrophe theory,
see for instance Appendix A in [16]. Therefore, we
use the ISPM [14 - 16], i.e. the exact integrations
within the finite limits bounded by the physically
accessible region of a classical motion and the
expansion of action phases and amplitudes in Eq. (1)
to higher order terms if necessary.

Enhancement of shell structure at bifurcations

Following the ideas of [8], by using the spheroid
cavity model in semiclassical POT calculations of
the oscillating part of the level density 5g,, (&) one
finally arrives at [14, 15]

08, (6)=0g;,(8)+0g,,(8) +0gy,(8) = ReZég;ff(e),
po

sc . . TT
5g'pol (e)= Apo exp(szpo —ZEJW). ®)]

The sum runs the leading families of POs, og f,f(f (&)

is their contribution of twice degenerated families of
the 3D and meridian 2D families of Pos and one-

parametric EQ orbits, k=+/2me/h is the wave
number of the particle, L, is the length of PO,

0,,1s the Maslov phase determined through the
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turning and caustic points along the PO, i.e. to the
Maslov index [12, 16]. For the oscillating 3D and
2D PO amplidudes 4;,,,,, in Eq. (5) one obtains

A;pp OCLpoerf(Zf,Zf)erf(Z;,Z;)I:(an)szetho]
(6)

The finite limits Z; (n=1,2) for the integrations in
Eq. (1) are given by

Z; =\/-izMn K, | [Gf (0';) - Gl*:| ,

75 = \/—man(detho /K,,)/h [Uzi _G;] Q)

for the case of a non-zero element K. of the matrix
K ,, of curvatures of the energy surface, and similar
expressions for vanishing K ;0 can be found in [15].
The primitive integers (n,,n,,n,) and the repetition
number M determine the PO, M(n,,n,n {D) ,

through the frequency (resonance) relations
o0, 0,=n:nn, o =0H/0l_ (kx=v,u,p)

with the Hamiltonian H(/ ,/,,I,) depending only

on the partial actions 7,,/,,/, in the cylindricl

23
sin” ¢ -
Ao OC\/ %/[nka nFy erf [ 21,

where ¢=7n /n,. The Gutzwiller stability factor

Fyp

last error function are given by

and the additional integration limits Z7 in the

Fy, =4sin® [an arccos(l — 27 sin’ ¢) / 2] and

Z; o \[Fpo | M, sin gdet K (10)

EQ >

Ky

shell correction energy dE one then obtains [6 - 16]

is the EQ-orbit curvature. For the semiclassical

SE=Y(n/1,) g ().

po

=MT

po po?

Nszgg(g), t (11)

where N is the particle number (the protons or the
neutrons) in nucleus, ¢, is the Fermi energy, T, is

the primitive (for the repetition number M =1)
period of motion of particle along the PO at the
energy € =& .
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coordinates v,u,@,

vmux
I, oc .[ afv\/cosh2 v—o0, -0, /sinh’v,

Y, n

”max

: 2 2
1, o J du\/al—sm u-o,/cos"u, I, o, .(8)
_umux

The integration boundaries are determined by the
accessible classically tori region through the
deformation parameter n=5b/a (b and a are
semiaxises of the spheroid with the usual volume
conservation condition, a’b=R?, R the radius of
the equivalent sphere). The tensor K7 of the

energy surface curvatures (with the diagonal terms
K, and K.) in Eqgs. (5) and (6) is defined with

respect to new action variables o, and o,

introduced instead of /, and [, for a given particle

energy &, according to Eq. (8), see details for all
explicit analytical expressions, including the specific
Maslov phases, in [15]. For the contribution of one-
parametric families of EQ POs, one finds Eq. (5)
( po is EQ in this case) with the amplitude

2 erf 2,25 Jerf [ 2,2} ], )
Fig. 1 shows the enhancement of shell structure
amplitudes | 4;, [and | 4, | of a typical bifurcation

scenario, see Eq. (6). At a critical point 7 =1.618...

the EQ “star” PO (5, 2) undergoes a bifurcation at
which the 3D orbit (5, 2, 1) is born; the latter does
not exist below 7=1.618... . In the SSPM (dashed
lines) the amplitude of the (5, 2) orbit diverges at
this deformation, whereas that of the bifurcated orbit
(5, 2, 1) is finite but discontinuous. As seen in
Fig. 1, the ISPM (solid lines) leads to the finite
amplitude 4, ,, for the (5, 2) orbit. Furthemore, the

ISPM softens the discontinuity for the (5, 2, 1) orbit,
leading to a maximum amplitude slightly above the
critical deformation. The relative enhancement of
these amplitudes 4,, in #™"* (or in (k,L,)"") near

po

the bifurcation point and surface energy ¢~ ¢, can
be understood through the local increase of the
number of parameters of the PO family with the
same action from one of EQ POs to the two
parameters of 3D POs, and the corresponding one
more exact integration than within the SSPM.

229



A.G. MAGNER

| 4]
0.5 —
- (5,2,1) [SPM ——
0.4 Lo SSPM ———
. I (5,2) [SPM —
0.3 1
0.2 1
0.1 1
0
1.2 .
n
Fig. I. Moduli of amplitudes |4,,| vs deformation

n=>b/a. Solid and dashed: using the ISPM and SSPM

for the star-like EQ (5,2) and 3D (5,2,1) POs as
examples.
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Fig. 2. Shell-correction energy SE (2mR*/h*) vs cube
root of particle number N'° at the critical deformations

n=12,+2,15.

Similarly, the dominant POs near 7 =~/3 =1.732...

are also the bifurcating 3D (6,2,1) and twice
(M =2) repeated EQ triangles 2(3, 1). For 7=2.0
the short 3D (5,2, 1), (6,2, 1), (7,2, 1) and (8, 2, 1)
POs determine the major pattern of the shell energy.
Thus, we emphasize that the amplitude enhancement
owing to the bifurcations of these POs is responsible
for the formation of the shell structure at large
deformations around the superdeformed shape where
the second well of the double-humped barrier
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Comparison with quantum numerical results

In Figs. 2 and 3, we present the semiclassical
shell-correction energies JE, see Eq. (11), versus

the particle number parameter N'° for various
critical deformations (ISPM, dotted lines) as
compared with the corresponding quantum-
mechanical (“Quantum”) results (solid lines). We
observe a very good agreement of the shell (and
super) shell structure at all deformations. Close
examination of different PO contributions shows
that for the deformation 7=1.2 in upper panel of

Fig. 2, a good convergence is obtained by including
only the shortest elliptic 2D and EQ POs. For
n= J2 the bifurcation of double-repeated short
diameters in the equatorial plane into that and
meridian butterflies becomes also important. In the
superdeformation region near 7=1.618... (see
Fig. 3) the bifurcations of the EQ star (5, 2) and the
simplest 3D (5, 2, 1) POs, and the hyperbolic 2D PO
(4, 2, 1) become dominating.
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Fig. 3. The same at other bifurcations
n=1618..,1.732...,2.0.

occurs, as it was earlier predicted in [8]. This is in
good agreement with the ISPM vs QM comparison
of the level-density shell corrections at the critical
deformations as well with the quantum Fourier
transformation of the level density g(k) as function

of the wave number £ to the PO length variable L
in the so called Fourier spectra [15]. Therefore, the
shell-structure amplitude enhancement owing to the
PO Dbifurcations is the physical phenomenon
observed in quantum calculations of the shell
corrections and can be interpreted as the reason for
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the second well of the Strutinsky double-humped
fission barrier at large deformations within the
spheroid nuclear model.

For perspectives, it would be worth to apply the
general points of this semiclassical theory to the
shell corrections of the moment of inertia [17] for
rotating nuclei as well as for the transport
coefficients (e.g., inertia parameter) of the low-lying
collective excitations [18] in the nuclear collective
dynamics of fission processes.

Conclusions

1. We derived the semiclassical ISPM trace
formulas as sums over contributions of families and
isolated POs which are continuous through all
symmetry-breaking and bifurcation points.

2. We found enhancement of the shell structure
near bifurcations in the superdeformed region.

3. Our ISPM results for the level densities
averaged with the gross-shell and more thin-shell
structures and shell-structure energies for critical
deformations are in good agreement with quantum
SCM calculations.

4. Bifurcations of the shortest 3D POs from EQ
orbits can be interpreted as responsible mainly for
the superdeformed second well of the double-
humped fission barrier, in line of earlier predictions
in [6].

Acknowledgement

I thank very much to my teacher Prof.
V. M. Strutinsky for so many fruitful collaborations
in relation to these reviewed works, also to Profs.
K. Arita, M. Brack, T.Dgssing, S.N. Fedotkin,
K. Matsuyanagi and S. R. Ofengenden.

REFERENCES

1. Strutinsky V.M. Shell effects in nuclear masses and
deformation energies // Nucl. Phys. - 1967. -
Vol. A95. - P. 420 - 442.

2. Strutinsky V.M. “Shells” in deformed nuclei / Nucl.
Phys. - 1968. - Vol. A122.-P. 1 - 33.

3. Funny Hills: The Shell-correction Approach to
Nuclear Shell Effects and Its Applications to the
Fission Process / M. Brack, J. Damgard, A.S. Jensen,
H.C. Pauli, V.M. Strutinsky, V. Wong // Rev. Mod.
Phys. - 1972. - Vol. 44. - P. 320 - 405.

4. Brack M. Vilen Mitrofanovich Strutinsky’s impact on
nuclear and many particle physics / The 3" Int. Conf.
“Current Problems in Nuclear Physics and Atomic
Energies”: Book of Abstracts. (Kyiv, 7 - 11 June,
2010). - Kyiv, 2010. - P. 73; Proc. of this conference.
In print.

5. Gutzwiller M.C. Periodic Orbits and Classical
Quantization Conditions // J. Math. Phys. - 1971. -
Vol. 12. - P. 343 - 359; Chaos in Classical and
Quantum Mechanics. - New York: Springer, 1990. -
432 p.

6. Strutinsky V.M. Semiclassical theory of the nuclear
shell structure // Nucleonica (Poland). - 1975. -
Vol. 20. - P. 679 - 716.

7. Strutinsky V.M., Magner A.G. Quasiclassical theory of
the nuclear shell structure // Sov. Phys. Part. & Nucl. -
1977.-Vol. 7. -P. 138 - 163.

8. Strutinsky V.M., Magner A.G., Ofengenden S.R.,
Dossing T. Semiclassical interpretation of the gross-
shell structure in deformed nuclei // Z. Phys. - 1977. -
Vol. A283. - P. 269 - 285.

9. Strutinsky V.M. Why are atomic nuclei deformed //
Bul. Acad. Sci. USSR, Sect. Phys. - 1983. - Vol. 47. -
P. 2100 - 2007.

SNEPHA ®I3UKA TA EHEPTETUKA T.11, Ne 3 2010

10. Strutinsky V.M. Shell structure in fission // Proc. of the
Int. Workshop IAEA-SM-241/C12, “Physics and
Chemistry of fission 1979”. - 1980. - Vol. 1. - P. 475 -
500.

11. Strutinsky V.M. Shell structure in deformed nuclei and
nuclear fission / Pramana. - 1989. - Vol. 33. - P. 21 -
32.

12. Brack M., Bhaduri R. K. Semiclassical Physics //
Frontiers in Physics. Vol. 96. - Addison-Wesley,
Reading, 1997. - 458 p.

13.4rita K. Periodic orbit bifurcations and nuclear
deformations // The 3" Int. Conf. “Current Problems
in Nuclear Physics and Atomic Energies”: Book of
Abstracts. (Kyiv, 7 - 11 June, 2010). - Kyiv, 2010. -
P.71-72.

14. Periodic-orbit bifurcations and superdeformed shell
structure / A.G. Magner, S.N. Fedotkin, K. Arita,
K. Matsuyanagi, M. Brack // Phys. Rev. E. - 2001. -
Vol. 63. - P. 065201.

15. Magner A.G., Fedotkin S.N., Arita K., Matsuyanagi K.
Symmetry breaking and bifurcations in the periodic
orbit theory. II. Spheroidal Cavity // Prog. Theor.
Phys. - 2002. - Vol. 108. - P. 853 - 901.

16. Magner A.G., Arita K., Fedotkin S.N. Semiclassical
approach for bifurcations in asmooth finite-depth
potential // Prog. Theor. Phys. - 2006. - Vol. 115. -
P. 523 - 54e.

17. Magner A.G., Sitdikov A.S., Khamzin A.A., Bartel J.
Semiclassical shell structure in rotating Fermi systems
// Phys. Rev. - 2010. - Vol. C81. - P. 064302.

18. Gzhebinsky A.M., Magner A.G., Fedotkin S.N. Low-
lying excitations as a semiclassical response // Phys.
Rev. - 2007. - Vol. C76. - P. 064315.

231



A.G. MAGNER

KBA3IKJIACUYHA OBOJIOHKOBA CTPYKTYPA
TA SAJEPHI JBOI'OPBI BAP’€PU

Hawm’ami B. M. Cmpymuncsrozo
O.T. Maruep

3a JOMOMOTO0 MOJIMNIIEHOT0 METOXY CTamioHapHOi (a3 OTPUMAHO KBa3iKIACHYHI TYCTHHH PIiBHIB SIK CyMH IO
130JIbOBAaHMX TEPiOANYHUX OpbOiTax Ta iXHIX ciMelcTBaX. YCTAHOBJICHO, IO OOOJIOHKOBI MOMPAaBKU A0 SHEPTrid Ta J0
ycepeaHeHOi TYCTHHHU PIiBHIB € HEMIEpepBHUMH (YHKIISIMU B TOYKaX MOpymIeHHS cumeTpii (Oidypkartiit) 3 mpaBUIEHOIO
aCHMIITOTHKOIO CTaHJapTHOTO METONy cTalioHapHOi ¢a3u. [lokazaHO MOCHJIEHHS sEpHOT OOOJIOHKOBOI CTPYKTYpH
mo0nu3y Touok Oidypkariit y cynepaepopmoBaniit obmacti. KBasikiacuuHi pe3yapTaTu Uil yCEPEIHEHUX KOMIIOHCHT
T'YCTHUHH DIBHIB SIK Y BUIIQJIKy BEIMKUX OOOJIOHOK, TaK 1 OUIBII TOHKOT CTPYKTYPH, & TAKOXK JUIs 0OOJIOHKOBHX ITOIPABOK
JI0 eHeprii mpu KpUTHYHUX JedopMamisix Jo0pe y3ro/DKYIOThCS 3 KBAaHTOBHMH pPO3paxyHKaMH ISl PI3HUX
OJTHOYACTUHKOBHX TaMiTbTOHIAHIB, 30KpeMa 3 TOTCHIliadaMH, IO MarTh pPi3Ky CTIHKY cdepoinanbHol GopMH.
[Tincunenns 000IOHKOBOI CTPYKTYpH uepe3 Oidypkariii HaHKOPOTIIMX eKBaTOpialbHUX OpOIT y TPUBUMIPHI TPUBOUTH
IO TIOSIBHL JIPYTOi SIMU B Oap'epi Oy snep y cynepachopMoBaHii odmacTi.

Kurouosi crosa: snepHa 000IIOHKOBa CTPYKTypa, Oap'epw mominy, saepHi medopmarii, 0OOJOHKOBI ITOTIPaBKU 10
eHeprii, KBa3iKJIacHuHa Teopis MepioANIHIX OpOiT, KBAHTOBHUH Ta KJIACHYHHUNA Xaoc.

KBA3BUKJIIACCUYECKASA OBOJIOYEYHASA CTPYKTYPA
N AJEPHBIE JIBYI'OPBBIE BAPBEPBI

Hamamu B. M. Cmpymunckozo
A.T. Maruep

C moMouIpl0 YIIYyYIIEHHOTO METO/Ia CTAlMOHApHOH (ha3bl MOJTyYeHBI KBa3HKIACCHYECKHE IUIOTHOCTH YPOBHEH Kak
CYMMBI 110 H30JIMPOBaHHBIM IIEPUOANIECKHM OpOUTaM M MX ceMeiicTBaM. Y CTaHOBJIEHO, YTO 000JIOYESHYHBIC MTONIPABKH K
SHEPIUAM M K YCPEAHEHHOH IUIOTHOCTH YPOBHEW SIBIAIOTCS HENPEPHIBHBIMH (DYHKIMAMH B TOYKaxX HapyIICHUS
cumMmerpun (Oudypkaiuii) ¢ MpaBUILHONH ACHMITOTUKOW CTaHAAPTHOTO MeToAa craiuoHapHoi (asel. Ilokazano
yCUJIEHHE SIACPHOM 000J0YEHHONW CTPYKTYphl BOJM3M TOuek Oudypkaumit B cynepaehopMUpOBaHHOH 001acTH.
KBasuknaccuueckue pe3yabTaThl IJId YCPCAHCHHBIX KOMIIOHCHT IIJIOTHOCTH ypOBHeﬁ, KaKk B Cliy4dac OOMIBIIUX
obosouek, Tak ¥ 0OoJjiee TOHKOI 00OJIOYEUHOI CTPYKTYpBI, a Takke Uil 00OJOYEYHBIX IOMPABOK K JHEPTHU MpPHU
KPUTHYECCKUX I[e(bOpMaLII/IHX XOpomo COoriaCyroTca € KBAaHTOBBIMH pacd€TaMu Jid Pas3sjInYHBIX OJHOYACTUYHBIX
raMWIBTOHHAHOB, B YaCTHOCTH C IIOTEHIMAIaMH, UMEIOIIMMHU PE3KyI0 CTEHKY CEepOoMNaIbHON (OpMBL YcuiieHue
000JI04e4YHON CTPYKTYphl M3-3a OuQypKanui KpaTdyalIIMX OSKBaTOPUAIBHBIX OPOMT B TPEXMEpHBIE IPUBOIUT K
TMIOSIBJICHUIO BTOPOI1 SIMBI B Oapbepe AeeHus sAep B cynepaeopMUpOBaHHOM 001acTy.

Kniouesvie cnoea: sipepHas o0ojovedHas! CTPYKTypa, Oapbephl AeNeHHs, siepHble nedopManuu, 000JI0YeHHbIE
TIOTIPAaBKU K SHEPTUH, KBA3UKJIACCHYECKasi TEOPHUS MIEPUOJUIECKUX OPOUT, KBAHTOBBIH M KJIACCHUECKHI Xaoc.
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