A. T. Rudchik, Yu. O. Shyrma, E. I. Koshchy, S. Kliczewski, B. G. Novatsky, O. A. Ponkratenko, E. Piasecki, G. P. Romanyshyna, K. Rusek, Yu. M. Stepanenko, I. Strojek, S. B. Sakuta, A. Budzanowski, L. Głowacka, I. Skwirczyńska, R. Siudak, J. Choiński, A. Szczurek

New angular-distribution data of 13 C + 18 O elastic and inelastic scattering at the energy $E_{lab}({}^{18}$ O) = 105 MeV were obtained for the transitions to the ground and excited states 3.088 MeV(1/2⁺), 3.555 MeV (1/2⁻), 3.854 MeV (5/2⁺) of 13 C and 1.982 MeV (2⁺), 3.555 MeV (4⁺), 3.921 MeV (2⁺), 4.456 MeV (1⁻), 5.098 MeV (3⁻), 5.260 MeV (2⁺) of 18 O. These and the 13 C + 18 O elastic scattering data taken from the literature at the energies $E_{lab}({}^{18}$ O) = 15, 20, 24, 31 MeV and $E_{lab}({}^{13}$ C) = 24 MeV were analysed within the optical model and coupled-reaction-channels methods. Sets of 13 C + 18 O optical potential parameters and their energy dependence were obtained. Contributions of potential scattering and transfer reactions to the elastic and inelastic channels of 13 C + 18 O scattering were studied. Isotopic differences (effects) in ${}^{12, 13}$ C + ${}^{16, 18}$ O optical potential parameters were investigated.

Keywords: nuclear reactions, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.