![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Reconstruction of Chernobyl source parameters using gamma dose rate measurements in town Pripjat
M. M. Talerko1
1Institute for Safety Problems of Nuclear Power Plants of National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: With the help of mathematical modeling of atmospheric transport the calculations of accidental release dispersion from the Chernobyl NPP to town Pripjat during period from 26 till 29 April 1986 have been carried out. Data of gamma rate measurements which was made in 31 points of the town were used. Based on the solution of atmospheric transport inverse problem the reconstruction of Chernobyl source parameters has been made including release intensity and effective source height. The input of main dose-forming radionuclides into the exposure dose during the first 40 hours after the accident (the period of population residence in the town before the evacuation) has been estimated. According to the calculations the 131I deposition density averaged over the town territory was about 5.2 · 104 kBq/m2 (on 29.04.86). Minimum and maximum 131I deposition values were 2.8 · 104 kBq/m2 (western part, distance to the unit is 4.5 km) and 1.2 · 105 kBq/m2 (north-eastern part of town, 2 km from the unit) accordingly. For the moment of the evacuation dated April 27, deposition values were about 90 percent of these values.
Keywords: radiation monitoring, nuclear reactor, environment.
References:1. Талерко Н. Н. Физические особенности и ограничения моделей атмосферного переноса радионуклидов для разных пространственно-временных масштабов. Проблеми безпеки атомних електростанцій і Чорнобиля 11 (2009) 57.
2. Robertson L., Langner J. Source function estimate by means of variational data assimilation applied to the ETEX-I tracer experiment. Atmopheric Environment 32 (1998) 4219. https://doi.org/10.1016/S1352-2310(98)00176-9
3. Davoine X., Bocquet M. Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmos. Chem. Phys. Discuss. 7 (2007) 1. https://doi.org/10.5194/acpd-7-1-2007
4. Likhtarev I. A., Chumak V. V., Repin V. S. Retrospective Reconstruction of Individual and Collective External Gamma Doses of Population Evacuated After the Chernobyl Accident. Health Physics 66 (1994) 643. https://doi.org/10.1097/00004032-199406000-00004
5. I. K. Bailiff, V. Stepanenko. Retrospective dosimetry and dose reconstruction. Experimental collaboration project No. 10. Final report. European Commission. EUR 16540 EN (Luxembourg, 1996) 115 p.
6. Atmospheric dispersion in nuclear power plant siting: A safety guide, IAEA Safety series No. 50-SG-S3 (Vienna: IAEA, 1980) 108 p.
7. United Nations. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report to General Assembly (New York: United Nations, 2000).
8. Чернобыль: Радиоактивное загрязнение природных сред. Под ред. Ю. А. Израэля (Гидрометеоиздат, 1990).
9. Talerko N. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. J. Environ. Radioactivity 78 (2005) 311. https://doi.org/10.1016/j.jenvrad.2004.04.008
10. Muck K., Prohl G., Likhtarev I. et al. A Consistent Radionuclide Vector After the Chernobyl Accident. Health Physic 82 (2002) 141. https://doi.org/10.1097/00004032-200202000-00002
11. Гусев Н. Г., Беляев В. А. Радиоактивные выбросы в биосфере. Справ. (Москва: Энергоатомиздат, 1986) 224 с.
12. Gorshkov V. E., Karmazin I. P., Tarasov V. I. Reduced Integral Solutions for Gamma Absorbed Dose from Gaussian Plume. Health Physics 69 (1995) 210. https://doi.org/10.1097/00004032-199508000-00005
13. Талерко Н. Н. Комплекс моделей для оценки последствий атмосферных выбросов из АЭС в условиях неоднородных и нестационарных полей активности радионуклидов в воздухе. Проблеми безпеки атомних електростанцій і Чорнобиля 2 (2005) 8.
14. Лодейкин Ю. А., Камаев Д. А., Клепикова Н. В., Фреймундт Г. Н. Устойчивый алгоритм оценки параметров источника по измерениям в ближней зоне. Тез. докл. Всерос. науч. конф. "Исследование процессов в нижней атмосфере при помощи высотных сооружений" (Обнинск: НПО "Тайфун", 8 - 10 октября 2008) c. 154.
15. Крянев А. В., Лукин Г. В. Математические методы обработки неопределенных данных (Москва: Физматлит, 2003) 216 с.