ЯДЕРНА ФІЗИКА — Ядерна фізика та енергетика 2010, т. 11, № 2, с. 136 - 140

УДК 539.163

ЭНЕРГЕТИЧЕСКИЕ И КОРРЕЛЯЦИОННЫЕ СВОЙСТВА ЭЛЕКТРОНОВ "ВСТРЯСКИ" ПРИ β-РАСПАДЕ

© 2010 Н. Ф. Митрохович

Институт ядерных исследований НАН Украины, Киев

Проведены измерения энергетического спектра электронов "встряски" при β-распаде ¹⁵²Eu и их скоррелированности по направлению вылета с импульсом β-частицы. Измерения выполнены в диапазоне 150 - 2000 эВ на установке совпадений γ-квантов и β-частиц с низкоэнергетичными электронами, включая е₀-электроны вторичной электронной эмиссии (γβе₀-совпадения). Регистрация электронов "встряски" осуществлялась по создаваемым ими е₀-электронам. По полученным данным 70 % электронов "встряски" в измеренной части спектра находится до 500 эВ, а сами электроны "встряски" сильно скоррелированы по направлению вылета с β-частицей, причем их скоррелированность с энергией электрона "встряски" возрастает, качественно подчиняясь зависимости ~ E^{1/2}

Ключевые слова: электроны "встряски", β-распад, ¹⁵²Eu.

Введение

При β-распаде резко изменяется заряд ядра на 1, что вызывает сильную встряску атомной оболочки, сопровождается ее возбуждением или ионизацией [1]. Эффект на внешних оболочках значителен [2], но именно для них изучен мало. Эффекты "встряски" при β-распаде по вероятности сопоставимы с вероятностью основного процесса и их необходимо учитывать при изучении атомно-ядерных процессов. Сами электроны "встряски" сильно скоррелированы с β-частицами, испускаясь вместе с ними в ту же полусферу [3]. Это обстоятельство, важное в конкретных измерениях низкоэнергетичных электронов с участием В-частиц, является также важным для решения общей задачи о корреляционном движении частиц в импульсном и спиновом пространстве [1], поскольку изучение корреляционных эффектов при "встряске", например при β-распаде, двойной фотоионизаци или внутренней конверсии дают информацию о электрон-электронном взаимодействии и конкретных механизмах, ответственных за наблюдение этих явлений. Данная работа является непосредственным продолжением предыдущей работы [4] по "встряске" при β-распаде и является также продолжением работ [3 - 7] по "встряске" при β -распаде и внутренней конверсии в распаде ^{152,154}Eu. В ней продолжено изучение энергетического спектра электронов "встряски" и проведены измерения зависимости скоррелированности направления испускания электрона "встряски" и В-частицы от энергии электрона "встряски" при β-распаде ¹⁵²Eu.

Методика измерений и результаты

Работа выполнена на установке [8] для измерения временных и энергетических спектров

совпадений у-квантов с β -частицами и низкоэнергетичными электронами, включая e_o -электроны вторичной электронной эмиссии ($\gamma(\beta + e_o)$ и $\gamma\beta e_o$ -совпадения). Использовался источник ¹⁵²Eu на тонкой подложке с толщиной радиоактивного слоя 30 мкг/см². Значительное самопоглощения низкоэнргетичной части спектра в таком радиоактивном слое позволило изучать электроны "встряски" при β -распаде, начиная со 150 эВ. β -распад ¹⁵²Eu отбирался по γ 344 (рис. 1) и, таким образом, электроны "встряски" регистрировались в совпадениях с γ 344.

Рис. 1. Фрагмент схемы распада 152 Eu. Весь β-распад 152 Eu проходит через состояние 344 кэВ 2+. Интенсивный ү344 является изолированным в γ-спектре и не маскируется интенсивными γ-переходами из є-ветви распада.

Геометрия измерений представлена на рис. 2.

В данной методике измерений осуществлена регистрация электронов "встряски" по е₀-электронам вторичной электронной эмиссии. Электроны "встряски" е_{Sh}, испускающиеся в узком телесном угле из источника S, образуют на алюминиевой фольге E е₀-электроны. Конструкция источника (активность находится на тонкой

Рис. 2. МСР – детекторы (L и R) на основе микроканальных пластин для регистрации e_0 -электронов вторичной электронной эмиссии от электронов "встряски" e_{Sh} и β -частиц от источника S. NaJ(Tl) – сцинтилляционный детектор для регистрации γ -квантов. E – фольга Al 0,07 мм. U_E = 0, U_S > U_L, U_R = 0.

0,5 мм алюминиевой полоске) и всех электродов формирует при подаче на них электрических потенциалов достаточно однородное электрическое поле, которое при $U_E = 0$, $U_S > U_L$, $U_R = 0$ вытягивает почти все е_о-электроны от фольги Е в сторону левого детектора и, таким образом, еоэлектроны регистрируются только левым детектором и только от Е. Фольга Е с толщиной 0,07 мм поглощает интенсивные электроны конверсии перехода 122 кэВ Е2, но пропускает более высокоэнергетичные β-частицы, которые регистрируются правым детектором. Таким образом, в совпадениях у344 с е_о-электронами регистрируются электроны "встряски" е_{Sh}, энергия которых $E_{eSh} > eU_S$ и которые в $\gamma_{344}\beta e_o$ -совпадениях движутся в том же телесном угле, что и β-частица. При изменении напряжения на источнике доступно измерение интегрального энергетического спектра электронов "встряски". Дифференциальный энергетический спектр электронов "встряски" получается после численного дифференцирования интегрального спектра.

В такой методике проводились измерения γ -спектров в γe_o - и $\gamma \beta e_o$ -совпадениях. Энергетические спектры в γe_o - и $\gamma \beta e_o$ -совпадениях измерялись для временного интервала Δt (рис. 3), которым выделялся e_o -компонент временного спектра совпадений и от которого формировались импульсы для управляющего входа анализатора.

На рис. 4. приведены γ -спектры в $\gamma(\beta + e_o)$ - и $\gamma\beta e_o$ -совпадениях, измеренные при смещении на источнике 200 эВ. В измерениях такого типа, проведенных при различных напряжениях на источнике, определялась интенсивность фотопиков γ 344, относящаяся к e_o -компоненту. В $\gamma(\beta + e_o)$ -совпадениях для получения этой интенсивности вычитался $\gamma\beta$ -компонент, который был измерен при

Рис. 3. Временной интервал Δt , выделяющий e_o -компонентент во временном спектре $\gamma_{344}(\beta + e_o)$ -совпадений, в котором проводились измерения энергетического спектра γe_o - и $\gamma \beta e_o$ -совпадений.

Рис. 4. γ -спектр ¹⁵²Eu (верхний) и ниже – спектры $\gamma(\beta + e_o)$ -, $\gamma\beta$ - и $\gamma\beta e_o$ -совпадений γ -квантов с частицами и e_o -электронами вторичной электронной эмиссии от фольги Е. $\gamma\beta$ -спектр измерялся при расположении перед L-детектором алюминиевой фольги толщиной 0,07 мм. U_S = 200 B.

помещении перед L-детектором алюминиевой фольги толщиной 0,07 мм, поглощающей интенсивные электроны конверсии перехода 122 кэВ E2, проходящие через подложку источника и e_0 -электроны от фольги Е. Поглощенная часть β -спектра, уменьшающая на 20 % интенсивность $\gamma\beta$ -компонента, вычислялась по хорошо известному β -спектру ¹⁵²Eu и специально разработанной для этого программы. По полученной интенсивности фотопиков γ 344, из одиночного спектра и спектров совпадений с вычетом случайного фона (определяемого по избыточному присутствию в спектрах совпадений γ 1408) определялись экспериментально регистрируемые выходы электронов "встряски" (Y) на акт β -распада. При произвольной взаимной ориентации направления испускания электрона "встряски" e_{Sh} и β -частицы, что имеет место при проведении γe_o -совпадений, это $Y^{\Omega=4\pi} = N(\gamma_{344}e_o)/N(\gamma_{344})$, а при испускании e_{Sh} и β -частицы в один и тот же телесный угол в направлении вперед, что имеет место при проведении $\gamma\beta e_o$ -совпадений, это $Y^{\Omega=0} = N(\gamma_{344}\beta e_o)/N(\gamma_{344}\beta)$, где N() – интенсивности соответствующих фотопиков.

Вводится величина скоррелированности Υ направления испускания электрона "встряски" по направлению испускания β -частицы, определяемая как $\Upsilon = \Upsilon^{\Omega=0}/\Upsilon^{\Omega=4\pi}$.

Основные результаты приведены в таблице, которая содержит экспериментальные и исправленные на самопоглощение Р в источнике [7] (для пробега ~ $(E/2000)^{1.4}$) У-выходы электронов "встряски", их скоррелированность Υ по направлению испускания с β -частицей и дифференциальные спектры от дифференцировании инте-

гральных выходов $Y_{\gamma e} \equiv Y^{\Omega=4\pi}$ и $Y_{\gamma\beta e} \equiv Y^{\Omega=0}$ из измерений в двойных и тройных совпадениях.

Обсуждение результатов и выводы

Как можно видеть из таблицы, Y выходы электронов "встряски" на акт β -распада при измерении в $\gamma\betae_o$ -совпадениях примерно на порядок выше, чем в γe_o -совпадениях. Это указывает на наличие сильной корреляции направления испускания электрона "встряски" и β -частицы, поскольку при отсутствии такой корреляции Y выходы электронов "встряски" на акт β -распада при измерении в γe_o - и $\gamma\beta e_o$ -совпадениях были бы одинаковыми. Однако, в соответствии со скоррелированностью Υ , они сильно различаются и, как можно видеть Υ , приведенная в таблице для интегрального энергетического спектра электронов "встряски", с возрастанием энергии электронов "встряски" возрастает.

Us	$Y_{\gamma e}$	$Y_{\gamma\beta e}$	Р	$Y_{\gamma e}^{p}$	$Y_{\gamma\beta e}{}^p$	Ŷ	$\left(\frac{DY_{\gamma e}}{DE}\right) \cdot 10^{4}$	$\left(\frac{DY_{\gamma\beta e}}{DE}\right) \cdot 10^{3}$
150	0,00173(10)	0,0222(14)	0,131	0,0132(8)	0,169(11)	12,8(11)	21(10)	40(14)
200	0,00186(10)	0,0215(14)	0,167	0,0111(6)	0,129(10)	11,6(11)	22(9)	37(12)
250	0,00179(10)	0,0186(14)	0,202	0,00886(5)	0,092(7)	10,4(10)	10(7)	11(10)
300	0,00185(10)	0,0190(14)	0,235	0,00787(40)	0,081(6)	9,8(9)	16(6)	0(8)
350	0,00166(10)	0,0215(17)	0,266	0,00624(40)	0,081(6)	12,9(13)	13(5)	19(7)
400	0,00147(10)	0,0185(13)	0,297	0,00495(32)	0,0623(44)	12,6(12)	8,7(20)	9(3)
500	0,00114(10)	0,0158(16)	0,355	0,00321(30)	0,0445(45)	13,9(19)	3,1(9)	2,8(13)
700	0,00091(11)	0,0155(13)	0,462	0,00197(23)	0,0335(28)	16,5(24)	1,0(5)	1,8(6)
1000	0,00084(10)	0,0137(13)	0,605	0,00139(16)	0,0226(21)	16,3(24)	0,5(2)	0,4(2)
1500	0,00073(10)	0,0148(10)	0,815	0,00090(12)	0,0182(12)	20,2(30)	0,0(4)	0,5(5)
1700	0,00071(9)	0,0146(13)	0,892	0,00103(13)	0,0164(15)	15,9(25)	0,3(3)	0,7(3)
2000	0,00084(9)	0,0124(12)	1,000	0,00084(9)	0,0124(12)	14,8(21)		

Дифференциальный энергетический спектр электронов "встряски" приведен в таблице в двух последних колонках для корректированных на самопоглощение в источнике значений У-выходов электронов "встряски" из измерений в уе₀и уβе₀-совпадениях.

Качественные зависимости характеристик "встряски" с энергией в работе получены из усредненных значениях величин и приведены на рис. 5.

По полученным в работе результатам спектр электронов "встряски" при β -распаде ¹⁵²Eu является низкоэнергетичным и для измеренной части спектра с E > 150 эВ 70 % электронов "встряски" находится до 500 эВ. В районе 300 эВ наблюдается нерегулярность в виде некоторого пика. Этот пик в спектре из $\gamma\beta e_0$ -совпадений из-за возрастания Υ с энергией несколько смещен в сторону больших энергий.

Рис. 5. Выходы электронов "встряски" на акт β -распада для произвольного направления испускания электронов "встряски" ($Y^{\Omega=4\pi}$) и скоррелированного с β -чатицей ($Y^{\Omega=0}$). На вставке их дифференциальный спектр. Пунктиром показана качественная зависимость скоррелированности Υ от энергии.

Спектр электронов "встряски" качественно такой же, как и в предыдущей работе [4], но дополняет его более низкоэнергетичной частью и более подробной энергетической шкалой измерений.

Выход $Y^{\Omega=0}$ при совместном движении электрона "встряски" и β -частицы вперед для интегрального спектра в 10 - 20 раз выше, чем выход $Y^{\Omega=4\pi}$ при их произвольном направлении испускания. Усредненные значения Y с вычетом высокоэнергетичной части дают для скоррелированности Y значения от 6 до 22 при изменении энергии электронов "встряски" от 150 до 2000 эВ. Это соответствует качественной зависимости Y ~ $E^{1/2}$, т.е. скоррелированность направления вылета электрона "встряски" и β -частицы пропорциональна импульсу электрона "встряски".

Такие результаты по корреляции направлений испускания электрона "встряски" и β-частицы и полученная зависимость для нее от энергии электрона "встряски" указывают на присутствие прямого взаимодействия β-частицы с "вытряхиваемым" электроном атомной оболочки и дают определенную характеристику взаимодействия, ответственного за наблюдаемое корреляционное движение электрона "встряски" и β-частицы.

Недостаточность одного механизма "встряски" для описания полученных данных следует также из того, что в приближении внезапности спектр электронов "встряски" при В-распаде описывается интегралом перекрытия волновых функций начального Z и конечного Z + 1 состояния, является быстро падающим с максимумом при нуле [1] и локальный максимум при 300 эВ не описывает. Более строгие расчеты [9], учитывающие компонент от внезапного изменения заряда и компонент от прямого взаимодействия β-частицы с электроном атомной оболочки, который по этим расчетам оказался значительным (до 55 %), также дают быстро падающий спектр электронов "встряски", но они выполнены для значительно более высоких энергий электронов "встряски" (более 5 кэВ) и для сравнения с измеренным спектром, к сожалению, не подходят.

Результаты, полученные в данной работе, согласуются с предыдущими данными из исследований по β-распаду и конверсии [3 - 7] и качественно согласуются с работами по "встряске" при двойной фотоионизации [10 - 12], выполненными на лазерных пучках.

СПИСОК ЛИТЕРАТУРЫ

- Матвеев В. И., Парилис Э. С. Встряска при электронных переходах в атомах // Успехи физических наук. - 1982. - Т. 138. - Вып. 4. - С. 573 - 602.
- Kochur A. G., Popov V. A. Shake up and shake off probabilities for L-, M-, and N-electrons in atoms with Z = 3 to 60 // Radiation Physics and Chemistry. -2006. - Vol. 75. - P. 1525 - 1528.
- Митрохович Н. Φ. Корреляция β-частиц с электронами "встряски" при β-распаде ¹⁵²Eu // Материалы Междунар. конф. "Current Problems in Nuclear Physics and Atomic Energy". К., 2006. С. 412 416.
- Митрохович Н.Ф. Энергетическое распределение электронов "встряски" при β-распаде ¹⁵²Eu // Ядерна фізика та енергетика. - 2008. - № 1 (23) -С. 24 - 28.
- 5. *Митрохович Н.* Ф. Электроны "встряски" при β-распаде ^{152,154}Eu // Зб. наук. праць Ін-ту ядерних досл. – 2004. – № 2 (13). – С. 52 - 60.
- Митрохович Н. Ф., Купряшкин В. Т. Корреляция электронов внутренней конверсии с электронами "встряски" при ε-распаде ¹⁵²Eu // Ядерна фізика та енергетика. - 2007. - № 1 (19) - С. 61 - 66.

- 7. *Митрохович Н. Ф.* Энергетическое распределение электронов "встряски" атомной оболочки при внутренней конверсии // Там же. 2009. Т. 10, № 3 С. 263 268.
- Купряшкин В. Т., Митрохович Н. Ф. Установка для измерения временных и энергетических спектров γβ(e + e₀)-совпадений // Там же. - 2006. - № 1 (17) -С. 90 - 94.
- Баткин И. С., Копытин И. В., Смирнов Ю. Г., Чуракова Т. А. Ионизация внутренних оболочек атома в процессе β-распада // Ядерная физика. - 1981.
 - Т. 33, вып. 1. - С. 48.
- Weber TH., Giessen H., Weckenbrock M. et al. Correlated electron emission in multiphoton double ionization // Nature. - 2000. - Vol. 405. - P. 658 - 661.
- Weckenbrock M., Hattas M., Gzasch A. et al. Experimental evidence for electron repulsion in multiphoton double ionization // J. Phys. B. : At. Mol. Opt. Phys. - 2001. - Vol. 34. - P. 449 - 455.
- Moshammer R., Ulrich J., Fisher D. Strongly directed electron emission in non-sequential double ionization of Ne by intense laser pulses // J. Phys. B. : At. Mol. Opt. Phys. - 2003. - Vol. 36. - P. 113 - 119.

ЕНЕРГЕТИЧНІ ТА КОРЕЛЯЦІЙНІ ВЛАСТИВОСТІ ЕЛЕКТРОНІВ "СТРУСУ" ПРИ В-РОЗПАДІ

М. Ф. Митрохович

Проведено вимірювання енергетичного спектра електронів "струсу" при β-розпаді ¹⁵²Eu та їхні скорельованості за напрямком вильоту з імпульсом β-частинки. Вимірювання виконано в діапазоні 150 - 2000 еВ на установці збігів γ-квантів та β-частинок з низькоенергетичними електронами, включаючи е₀-електрони вторинної електронної емісії (γβе₀-збіги). Реєстрація електронів "струсу" здійснювалася по створюваних ними е₀-електронах. За отриманими даними 70 % електронів "струсу" у виміряній частині спектра знаходиться до 500 еВ, а самі електрони "струсу" сильно скорельовані за напрямком вильоту з β-частинкою, причому їхня скорельованість з енергією електрона "струсу" зростає, якісно підлягаючи залежності ~ E^{1/2}

Ключові слова: електрони "струсу", β-розпад, ¹⁵²Eu.

ENERGY AND CORRELATION PROPERTIES OF "SHAKE-OF" ELECTRONS AT β-DECAY

M. F. Mitrokhovich

Measurements of energy spectrum of "shake-of" electrons at the decay of ¹⁵²Eu and their correlatings according to outgoing direction with a momentum of β -particle are conducted. The measurements are performed in the range of 150 - 2000 eV on the installation of coincidences of γ -quanta and β -particles with low energy of electrons, including e_o-electrons of the secondary electron emission ($\gamma\beta e_o$ -coincidences). Registration of "shake-of" electrons was implemented on e_o-electrons, created by them. Under the obtained data 70 % of "shake-of" electrons in the measured part of the spectrum is arranged up to 500 eV, and "shake-of" electrons their selves are heavy correlated according to outgoing direction with a β -particle, herein their correlating with the energy of "shake-of" electron is increasing, qualitatively subjected to ~ E^{1/2} relation.

Keywords: electrons of "shake-of", β -decay, ¹⁵²Eu.

Поступила в редакцию 10.02.10, после доработки - 16.04.10.