УДК 539.172.17

— ЯДЕРНА ФІЗИКА =

ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА 2010, т. 11, № 2, с. 117 - 124

ЕНЕРГЕТИЧНА ЗАЛЕЖНІСТЬ РОЗСІЯННЯ ЯДЕР ¹³С + ¹⁶О ТА КВАЗІМОЛЕКУЛЯРНИЙ ПОТЕНЦІАЛ ПОГЛИНАННЯ

© 2010 А. Т. Рудчик¹, Ю. О. Ширма¹, В. А. Плюйко^{1, 2}, О. А. Понкратенко¹, І. В. Сименог³

¹ Інститут ядерних досліджень НАН України, Київ ² Київський національний університет імені Тараса Шевченка, Київ ³ Інститут теоретичної фізики ім. М. М. Боголюбова НАН України, Київ

Експериментальні дані пружного розсіяння ядер ¹³C + ¹⁶O при енергіях $E_{c.ц.м.} = 6,28 - 59,17$ МеВ проаналізовано за оптичною моделлю та методом зв'язаних каналів реакцій. Досліджено енергетичну залежність потенціалу взаємодії ядер ¹³C + ¹⁶O типу Вудса - Саксона з об'ємним і поверхневим поглинаннями. Установлено, що потенціал поглинання в цьому розсіянні має квазімолекулярну форму з вузьким максимумом у приповерхневій області взаємодії ядер, який може бути резонансом двоядерної системи ²⁹Si = ¹³C + ¹⁶O. Визначено внески най-простіших реакцій передач у пружне розсіяння ядер ¹³C + ¹⁶O.

Ключові слова: пружне розсіяння важких іонів, реакції передач, оптична модель, метод зв'язаних каналів реакцій, оптичні потенціали, спектроскопічні амплітуди нуклонів і кластерів.

Вступ

Розсіяння легких ядер успішно застосовується як для вивчення залежності ядро-ядерної взаємодії від структури ядер і енергії, так і для дослідження властивостей двоядерних систем квазімолекулярного типу. Зокрема, у розсіянні ядер ¹²C + ¹⁶O при різних енергіях було виявлено, що потенціал поглинання типу Вудса - Саксона має квазімолекулярну форму з вузьким максимум у периферійній області, який можна розглядати як резонанс проміжної квазімолекулярної системи 28 Si = 12 C + 16 O, що сприяє непружним процесам. У роботах [1 - 3] було досліджено розсіяння ядер ¹²С + ¹⁶О та енергетичну залежність параметрів потенціалу взаємодії цих ядер типу Вудса - Саксона з об'ємним і поверхневим поглинанням. Виявлено, що параметри максимуму поверхневого поглинання сильно впливають на кутовий розподіл розсіяння ядер ${}^{12}C + {}^{16}O$ в області великих кутів, де основну роль відіграє дальня компонента розсіяння, а внески одно- і двоступінчастих реакцій передач ще несуттєві.

У цій роботі продовжено вивчення розсіяння ізотопів вуглицю ядрами ¹⁶О при різних енергіях. Представлено результати дослідження пружного розсіяння ¹³C + ¹⁶О при енергіях $E_{c.ц.м.} = 6,28$ -- 59,17 MeB [4 - 9] за оптичною моделлю (ОМ) та методом зв'язаних каналів реакцій (МЗКР) з використанням потенціалу типу Вудса - Саксона з об'ємним та поверхневим поглинанням. Досліджено квазімолекулярну структуру потенціалу поглинання, ізотопічні відмінності розсіяння ^{12, 13}C + ¹⁶О та внески реакцій передач у пружне розсіяння ядер ¹³C + ¹⁶O.

Аналіз експериментальних даних

Методи розрахунків

В ОМ- та МЗКР-розрахунках диференціальних перерізів розсіяння ядер ¹³C + ¹⁶О використовувся оптичний потенціал типу Вудса - Саксона з об'ємним і поверхневим поглинаннями

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_S \left[1 + \exp\left(\frac{r - R_{W_S}}{a_{W_S}}\right) \right]^{-1} + i4W_D \exp\left(\frac{r - R_{W_D}}{a_{W_D}}\right) \left[1 + \exp\left(\frac{r - R_{W_D}}{a_{W_D}}\right) \right]^{-2}$$
(1)

та кулонівський потенціал рівномірно зарядженої кулі

$$V_{C}(r) = \begin{cases} Z_{P} Z_{T} e^{2} (3 - r^{2} / R_{C}^{2}) / 2R_{C}, & r \leq R_{C}, \\ Z_{P} Z_{T} e^{2} / r, & r > R_{C}, \end{cases}$$
(2)

де $R_i = r_i (A_P^{1/3} + A_T^{1/3}), i = \{V, W_S, W_D, C\}; A_P, Z_P, та A_T, Z_T - маси і заряди іонів P та ядер мішені T відповідно. При цьому покладалось <math>r_C = 1,25$ фм, а параметри ядерного потенціалу $X_i = \{V_0, r_V, a_V, W_S, r_{WS, *}, a_{WS, *}, W_D, r_{WD, *}, a_{WD}\}$ підганялись за χ^2 -критерієм до експериментальних даних розсіяння.

У розрахунках за МЗКР у систему зв'язку каналів включались пружне розсіяння ядер ${}^{13}C + {}^{16}O$ та найбільш важливі реакції передач, діаграми яких представлено на рис. 1.

Необхідні для розрахунків диференціальних перерізів реакцій передач спектроскопічні амплітуди

$$S_{x} = \left(\frac{A}{x}\right)^{1/2} < \Psi_{A} \mid \Psi_{C} \Psi_{x}; \phi_{xC} >$$
(3)

кластерів та нуклонів *x* у системах A = C + x було визначено за методом Смірнова - Чувільського в рамках трансляційно-інваріантної моделі оболонок (ТІМО) [10]. У виразі (3) Ψ_A , Ψ_C , $\Psi_x - x$ вильові функції внутрішніх станів ядер A, C, x, а $\varphi_{xC} - x$ вильова функція руху кластера x відносно ядра-кора C. Спектроскопічні амплітуди S_x подано у табл. 1.

$$\frac{{}^{13}C}{{}^{16}O} \frac{{}^{16}O}{{}^{13}C} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{14}N}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{15}N}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{15}N}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{16}O}{{}^{14}N} \frac{{}^{13}C}{{}^{12}C} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{16}O}{{}^{14}N} \frac{{}^{13}C}{{}^{12}C} \frac{{}^{13}C}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{12}C}{{}^{13}C} \frac{{}^{12}C}{{}^{13}C} \frac{{}^{12}C}{{}^{16}O} \frac{{}^{13}C}{{}^{17}O} \frac{{}^{16}O}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{12}C}{{}^{17}O} \frac{{}^{13}C}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{12}C}{{}^{17}O} \frac{{}^{16}O}{{}^{16}O} + \frac{{}^{13}C}{{}^{16}O} \frac{{}^{12}C}{{}^{16}O} \frac{$$

Рис. 1. Діаграми одно- та двоступінчастих реакцій передач нуклонів і кластерів у розсіянні ядер ¹³C + ¹⁶O.

A	С	x	nL_i	S_x
¹³ C	^{12}B	р	$1P_{1/2}$	0,283 ^(a)
		-	$1P_{3/2}$	0,801
¹³ C	^{12}C	n	$1P_{1/2}$	0,601
¹⁴ C	¹³ C	n	$1P_{1/2}$	$1,094^{(a)}$
¹⁴ N	¹³ C	р	$1P_{1/2}$	0,461
		-	$1P_{3/2}$	0,163 ^(a)
¹⁵ C	¹³ C	2n	$2P_1$	$0,802^{(a)}$
¹⁵ N	¹³ C	d	$2S_1$	0,248 ^(a)
			$1D_1$	$0,444^{(a)}$
¹⁶ O	^{12}C	α	$3S_0$	0,544
¹⁶ O	¹³ C	³ He	$2P_{1/2}$	0,910 ^(a)
¹⁶ O	^{14}N	d	$1D_{1}$	$1,400^{(a)}$
¹⁶ O	¹⁵ N	р	$1P_{1/2}$	$-1,461^{(a)}$
¹⁶ O	¹⁵ O	n	$1P_{1/2}$	$1,461^{(a)}$
^{17}F	^{16}O	р	$1D_{5/2}$	-0,500
¹⁷ O	¹³ C	α	$2D_2$	0,191 ^(a)
¹⁷ O	¹⁶ O	n	$1D_{5/2}$	0,500

Таблиця 1. Спектроскопічні амплітуди S_x нуклонів і кластерів x у системах A = C + x

 $^{(a)}S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x.$

Хвильові функції зв'язаних станів нуклонів і кластерів обчислювались стандартним способом - шляхом підгонки глибини *V* дійсного потенціалу Вудса - Саксона до енергії зв'язку нуклона чи

кластера x у системі A = C + x при параметрах потенціалу $a_V = 0,65 \text{ фм i } r_V = 1,25(C^{1/3} + x^{1/3}) \text{ фм.}$

Для розрахунків диференціальних перерізів пружного розсіяння ядер ${}^{13}C + {}^{16}O$ та підгонки параметрів X_i відповідного оптичного потенціалу за ОМ використовувалась програма SPI-GENOA [11], МЗКР-розрахунки проводились за допомогою програми FRESCO [12], а спектроскопічні амплітуди нуклонів і кластерів в ядрах обчислювались програмою DESNA [13, 14].

Пружне розсіяння ядер ${}^{13}C + {}^{16}O$

Диференціальні перерізи пружного розсіяння ядер 13 C + 16 O при різних енергіях представлено на рис. 2 - 6, на яких кривими показано розрахунки перерізів за M3KP для різних процесів.

Рис. 2. Диференціальні перерізи пружного розсіяння іонів ¹³С ядрами ¹⁶О при енергії E_{na6} . (¹³C) = 24 МеВ [6]. Криві – МЗКР-розрахунки.

Кутовий розподіл розсіяння іонів ¹³С ядрами ¹⁶О при енергії $E_{лаб.}(^{13}C) = 24$ МеВ ($E_{с.п.м.} =$ = 13,24 МеВ) [6] показано на рис. 2. Кривими представлено наші МЗКР-розрахунки для потенціального розсіяння (крива <pot>), послідовного обміну протонами і нейтронами (криві <pp> i <nn> відповідно), передачі ³Не-кластера (крива <³He>), реакцій передач n + α i α + n (крива <n α >) та p + d i d + p (крива <pd>). Кривою Σ показано когерентну суму всіх процесів. Розрахунки проведено з набором параметрів потенціалу взаємодії ядер ¹³C + ¹⁶O, отриманого з підгонки експериментальних даних розсіяння цих ядер за ОМ та уточнених при МЗКРрозрахунках. Цей набір параметрів подано в табл. 2, а на рис. 7 показано дійсну та уявну частини потенціалу ${}^{13}C + {}^{16}O$ (абсолютні значення) при енергії $E_{na6}({}^{13}C) = 24$ MeB.

Пучок іонів	<i>Е</i> _{лаб.} , МеВ	<i>Е</i> _{с.ц.м.} , MeB	- <i>V</i> ₀ , МеВ	<i>r_V,</i> Фм	<i>а_V,</i> Фм	- <i>W_s</i> , MeB	<i>r_{Ws}</i> , фм	а _{ws} , фм	- <i>W</i> _D , МеВ	<i>r_{WD} ,</i> фм	а _{WD} , фм	$R_{_{W_D}}$, фм	L _{pe3.}
¹⁶ O	14,00	6,28	55,0	1,600	0,440	3,5	1,660	0,025	0,40	1,848	0,100	9,0	15
	17,00	7,62	58,0	1,480	0,430	3,5	1,600	0,025	0,40	1,848	0,100	9,0	15
	20,00	8,97	65,0	1,400	0,440	3,7	1,490	0,025	0,40	1,765	0,100	8,6	16
	42,38	19,00	97,1	1,190	0,460	8,8	1,140	0,035	0,40	1,519	0,110	7,4	20
	47,96	21,50	102,7	1,170	0,467	13,2	1,139	0,040	0,43	1,496	0,115	7,3	21
	49,75	22,30	124,1	1,140	0,510	15,0	1,139	0,050	0,45	1,494	0,118	7,3	22
	57,24	25,66	184,4	1,060	0,522	16,7	1,135	0,120	0,57	1,458	0,135	7,1	23
	57,33	25,70	184,4	1,060	0,522	16,7	1,135	0,120	0,57	1,458	0,135	7,1	23
	64,69	29,00	239,0	0,998	0,544	17,1	1,100	0,140	1,00	1,406	0,200	6,9	24
	132,00	59,17	290,6	0,745	0,741	17,1	0,900	0,641	5,25	1,109	0,741	5,4	28
¹³ C	24,00	13,24	92,5	1,342	0,450	5,3	1,347	0,025	0,40	1,700	0,100	8,3	19
	50,00	27,59	231,3	1,040	0,528	17,1	1,135	0,130	0,70	1,406	0,151	7,1	23
	105,00	57,93	290,6	0,745	0,741	17,1	0,900	0,641	5,25	1,109	0,741	5,4	28

Таблиця 2. Параметри потенціалу взаємодії ядер ¹³C + ¹⁶O

Рис. 3. Диференціальні перерізи пружного розсіяння ядер ¹³С + ¹⁶О при енергіях $E_{\rm лаб.}(^{16}$ О) = 14, 17 і 20 МеВ [4]. Криві – МЗКР-розрахунки для потенціального розсіяння (криві <pot>) та реакцій передач (крива). Крива Σ – сума всіх процесів.

На рис. 2 видно, що в пружному розсіянні ядер 13 C + 16 O домінує потенціальне розсіяння на кути $\theta_{c.ц.м.} < 100^{\circ}$. У розсіянні на більші кути важливу роль відіграють процеси обміну нуклонами та передача ³Не-кластера. Інші реакції передач мають другорядне значення.

Рис. 4. Диференціальні перерізи пружного розсіяння ядер ¹³С + ¹⁶О при енергіях $E_{лаб.}$ (¹⁶О) = 42,38; 47,96 і 49,75 МеВ [7]. Криві – МЗКР-розрахунки.

Як видно на рис. 7, потенціал поглинання в розсіянні ядер ${}^{13}C + {}^{16}O$ при енергії $E_{\pi a 6.}({}^{13}C) = 24$ МеВ має вузький максимум на відстані $r = R_{W_0} = 8,3$ фм, якому передує глибокий вузький мінімум. Положення вершини цього максимуму позначено значком Δ .

Рис. 5. Те ж саме, що на рис. 3, але при енергіях $E_{\pi a \bar{b}}(^{16}\text{O}) = 57,24 \text{ i } 64,69 \text{ MeB [7] та } 132 \text{ MeB [9]}.$

Рис. 7. Потенціали розсіяння ядер ¹³C + ¹⁶O при різних енергіях та фолдінг-потенціал.

Диференціальні перерізи розсіяння ядер ${}^{13}C + {}^{16}O$ при інших енергіях показано на рис. 3 - 6. Кривими <pot> i на цих рисунках представлено M3KP-розрахунки для потенціального розсіяння та реакцій передач (когерентна сума) відповідно. Кривою Σ показано когерентну суму

Рис. 6. Те ж саме, що на рис. 3, але при енергіях $E_{\text{лаб.}}(^{13}\text{C}) = 24 \text{ MeB [6]}, 50 \text{ MeB [8] i 105 MeB [5]}.$

всіх процесів. Видно, що МЗКР-перерізи задовільно описують усі основні особливості кутової залежності диференціальних перерізів ¹³C + ¹⁶Oрозсіяння при всіх енергіях.

Як і в попередньому випадку, при енергіях $E_{c.п.м.} < 57$ МеВ у потенціалах поглинання при розсіянні ядер ¹³C + ¹⁶O спостерігаються вузькі максимуми в периферійній області, положення R_{W_D} яких подано в табл. 2. На рис. 7 такий максимум можна бачити для потенціалу W(r) при енергії $E_{лаб.}(^{16}\text{O}) = 64,69$ МеВ на відстані $r = R_{W_D} = 6,9$ фм. Для енергій $E_{с.п.м.} > 57$ МеВ, як видно з рис. 7 для $E_{лаб.}(^{16}\text{O}) = 132$ МеВ, у потенціалі поглинання відсутній максимум у периферійній області. Така ж ситуація спостерігалась і для розсіяння ядер $^{12}\text{C} + ^{16}\text{O}$ при енергіях $E_{с.п.м.} > 70$ МеВ [2, 3].

Для розсіяння ядер ¹³C + ¹⁶О було розраховано також фолдінг-потенціал (потенціал згортки) за моделлю подвійної згортки

$$V_f(r) = \int \rho_P(r_P) \rho_T(r_T) \upsilon(|\vec{r} + \vec{r}_T - \vec{r}_P|) d^3 r_P d^3 r_T , (4)$$

де $\rho_P(r_P)$, $\rho_T(r_T)$ - розподіли густин нуклонів в іоні P (¹⁶O) та ядрі мішені T (¹³C) відповідно; $\upsilon(|\vec{r} + \vec{r}_T - \vec{r}_P|) = \upsilon(s)$ - нуклон-нуклонний потенціал; \vec{r} - відстань між центрами ядер. У розрахунках потенціалу $V_f(r)$ використовувався потенціал нуклон-нуклонної взаємодії МЗҮ Рейда (Reid)

$$\upsilon(s) = 7999 \frac{e^{-4s}}{4s} - 2134 \frac{e^{-2.5s}}{2.5s} - 276 \ (1 - 0.005 \frac{E_P}{A_P}) \ \frac{\delta(s)}{s^2}$$
(5)

де A_P і E_P - маса й енергія іона P в лабораторній системі, а також розподіли нуклонів, отримані з розподілів зарядів (протонів) в ядрах ¹³С і ¹⁶О [15]. Обчислювався фолдінг-потенціал $V_f(r)$ за допомогою програми DFPOT [16, 17].

На рис. 7 потенціал $V_{f}(r)$ (крива "фолдінг") порівнюється з дійсними частинами потенціалу, отриманими з аналізу експериментальних даних розсіяння ядер ¹³C + ¹⁶O. Видно, що фолдінгпотенціал добре узгоджується з дійсною частиною потенціалу, отриманого з аналізу експериментальних даних пружного розсіяння ядер ¹³C + ¹⁶O при енергії E_{na6} . (¹⁶O) = 132 MeB.

Для енергій $E_{\text{лаб.}}({}^{16}\text{O}) = 64,69$ і 132 MeB ($E_{\text{с.ц.м.}} = 29$ і 59,17 MeB) та $E_{\text{лаб.}}({}^{13}\text{C}) = 24$ MeB ($E_{\text{с.ц.м.}} = 13,24$ MeB) на рис. 8 показано ефективні парціальні потенціали

Енергетична залежність потенціалу взаємодії ядер ¹³C + ¹⁶O

Функціональні зв'язки параметрів дійсної та уявної частин оптичного потенціалу взаємодії ядер ¹³C + ¹⁶O

$$C_V(E) = V \exp(R_V/a_V) = 23,82 - 0,42E + 0,003E^2$$
, (7)

$$C_{W_s}(E) = W_s \exp(R_{W_s} / a_{W_s}) = 469,9 - 21,4E + 0,23E^2,$$
(8)

$$V_{\rm e\phi}(r) = V_C(r) + V(r) + \hbar^2 l(l+1) / 2\mu r^2, \qquad (6)$$

висота бар'єрів яких близька до енергії розсіяння ядер ¹³C + ¹⁶O в с.ц.м. Номери цих парціальних потенціалів показано на рисунку й подано в табл. 2 ($L_{pes.}$). Положення максимумів бар'єрів (значки Δ на рис. 8) збігаються з положеннями вузьких максимумів R_{W_D} потенціалів поглинання в периферійних областях. Такий збіг положень максимумів може свідчити про те, що різке збільшення поверхневого поглинання може бути обумовлене резонансом двоядерної системи при критичних значеннях орбітальних моментів $L_{pes.}$

Для більш повної характеристики особливостей розсіяння двоядерної системи ${}^{13}\text{C} + {}^{16}\text{O}$ на рис. 9 показано залежність дійсної та уявної частин елементів матриці розсіяння S_l від орбітальних моментів *l*. Видно, що уявна частина Im S_l досягає максимального значення в околі орбітального моменту l = 20.

Рис. 9. Залежність дійсних та уявних частин елементів матриці розсіяння *S*_l від орбітальних моментів *l*.

$$C_{W_D}(E) = W_D \exp(R_{W_D} / a_{W_D}) = 109, 6 - 2,73E + 0,017E^2$$
(9)

показано на рис. 10 залежно від енергії $E = E_{c.ц.м.}$. Видно, що енергетичні залежності цих коефіцієнтів зв'язку C_V і C_W задовільно описуються поліномами другого ступеня.

Залежність параметрів ${}^{13}C + {}^{16}O$ -потенціалу від енергії $E_{c.ц.м}$ представлено на рис. 11. Кривими показано наближення цієї залежності параметризованими функціями

$$X_{i}(E) = \begin{cases} X_{i}^{\max} - (X_{i}^{\max} - X_{i}^{\min}) \cdot g(E, E_{X_{i}}, \Delta E_{X_{i}}) \\ X_{i}^{\min} + (X_{i}^{\max} - X_{i}^{\min}) \cdot g(E, E_{X_{i}}, \Delta E_{X_{i}}) \end{cases}$$

де

$$g(E, E_{X_i}, \Delta E_{X_i}) = \left[1 + \exp\left(\frac{E - E_{X_i}}{\Delta E_{X_i}}\right)\right]^{-1}$$
(11)

 $\{Y_i\} = \{X_i^{\min}, X_i^{\max}, E_{X_i}, \Delta E_{X_i}\}$ - параметри підгонки енергетичної залежності потенціалу. При цьому враховувалось дисперсійне співвідношення між дійсною V(r, E) та уявною W(r, E) частинами потенціалу розсіяння [18]

$$V(r, E) = V_0(r, E) + \Delta V_W(r, E),$$

$$\Delta V_W(r,E) = \frac{P}{\pi} \int_0^\infty \frac{W(r,E')}{E'-E} dE'$$
(12)

(Р вказує на головне значення інтеграла). При r = 0 ці співвідношення виражають зв'язок між параметрами глибин дійсної та уявної частин ¹³C + ¹⁶O-потенціалу. Визначені параметри {*Y_i*} енергетичної залежності потенціалу взаємодії ядер ¹³C + ¹⁶O-подано в табл. 3.

Рис. 10. Енергетична залежність коефіцієнтів C_V і C_W зв'язку між параметрами потенціалу взаємодії ядер ${}^{13}C + {}^{16}O.$

для
$$X_i = V_0, W_S, W_D, a_V, a_{W_S}, a_{W_D},$$

для $X_i = r_V, r_{W_S}, r_{W_D},$ (10)

Для порівняння на рис. 11 показано також енергетичні залежності параметрів V і W_S потенціалу розсіяння ядер ¹²C + ¹⁶O [2, 3] (криві <¹²C>). Видно, що різниця між максимальними значеннями глибин W_S потенціалів поглинання обох розсіювань незначна ($W_S(^{13}C) - W_S(^{12}C) =$ = 0,6 MeB) і близька до різниці порогів розвалу ядер ^{12, 13}C ($E_d(^{13}C) - E_d(^{12}C) = -0,79$ MeB).

Рис. 11. Енергетична залежність параметрів потенціалу взаємодії ядер¹³C + ¹⁶O у порівнянні з аналогічною залежністю ¹²C + ¹⁶O-потенціалу (криві <¹²C>).

Таблиця 3. Параметри Y_i енергетичної залежності потенціалу взаємодії ядер ¹³С + ¹⁶О

	X_i									
Y_i	- <i>V</i> ₀ , MeB	<i>r_V,</i> фм	<i>а_V,</i> фм	- <i>W_s,</i> MeB	<i>r_{Ws}</i> , фм	а _{ws} , фм	- <i>W_D</i> , MeB	r _{WD} , фм	а _{w_D} , фм	
X_i^{\min}	113,7	0,745	0,424	3,4	0,890	0,025	0,4	1,110	0,100	
X_i^{\max}	382,9	1,900	0,753	17,1	1,910	0,650	5,3	2,000	0,741	
E_{Xi} , MeB	26,3	15,000	33,330	19,3	14,900	35,000	33,6	20,000	34,075	
⊿ _{Xi} , MeB	2,3	10,000	7,816	2,7	10,100	5,000	2,3	9,000	3,001	

Основні результати та висновки

Відомі з літератури експериментальні дані пружного розсіяння ядер ¹³C + ¹⁶O при енергіях $E_{c.ц.м.} = 6,28 - 59,17$ MeB [4 - 9] проаналізовано за OM та M3KP з використанням оптичного потенціалу типу Вудса - Саксона з об'ємним та поверхневим поглинаннями. Визначено набори параметрів оптичного потенціалу взаємодії ядер ¹³C + ¹⁶O при різних енергіях.

Досліджено роль різних механізмів у пружному розсіянні цих ядер. Установлено, що при низьких енергіях домінує потенціальне розсіяння в повному кутовому діапазоні. При енергіях $E_{\text{с.ц.м.}} > 19$ МеВ потенціальне розсіяння домінує лише для кутів $\theta_{\text{с.ц.м.}} < 90^{\circ}$, а на більших кутах важливі також реакції передач.

- 1. Szilner S., Nicoli M. P., Basrak Z. et al. Refractive elastic scattering of carbon and oxygen nuclei: The mean field analysis and Airy structures // Phys. Rev. C. 2001. Vol. 64. P. 064614.
- Рудчик А. Т., Ширма Ю. О., Понкратенко О.А. Енергетична залежність потенціалу взаємодії іонів ¹⁶О з ядрами ¹²С // Ядерна фізика та енергетика. -2009. - Т. 10, № 2. - С. 249 - 256.
- Rudchik A. T., Shyrma Yu. O., Kemper K. W. et al. Isotopic effects in elastic and inelastic ¹²C + ^{16, 18}O scattering // Eur. Phys. J. A. - 2010. - Vol. 44. - P. 221 - 231.
- Barker P. H., Huber A., Knoth H. et al. One-neutron transfer reactions with beryllium, carbon and oxygen nuclei // Nucl. Phys. A. - 1970. - Vol. 155. - P. 401 -416.
- Bradlow H. S., Rae W. D. M., Fisher P. S. et al. A DWBA analysis of heavy ion α-transfer reactions on ¹⁶O // Nucl. Phys. A. - 1979. - Vol. 314. - P. 171 - 206.
- Bohne W., Grabisch K., Hergesell J. et al. A study of two-step transfer contributions to the inelastic scattering of ¹³C on ¹⁶O and ¹⁸O // Nucl. Phys. A. - 1979. -Vol. 332. - P. 501 - 514.
- Freeman R. M., Haas F., Morsad A., Beck C. Comparison of the ¹³C+ ¹⁶O reaction with ¹²C+ ¹⁷O // Phys. Rev. C. - 1989. - Vol. 39. - P. 1335 - 1339.
- Ikeda N., Nakamura F., Mizuuchi K. et al. Tensor polarization of ¹²C[2⁺₁] in the ¹⁶O(¹³C,¹²C)¹⁷O reaction at 50 MeV // Eur. Phys. J. A. 2000. Vol. 7. P. 491 502.
- 9. *Glukhov Yu. A., Rudakov V. P., Artemov K. P. et al.* Nuclear rainbow in the elastic scattering of ¹⁶O nuclei

Установлено, що при енергіях $E_{c.п.м.} < 59$ МеВ непружні процеси при розсіянні ядер ¹³C + ¹⁶O відбуваються переважно у вузькій поверхневій області, де в потенціалах поглинання спостерігаються вузькі максимуми. Положення цих максимумів поглинання при всіх енергіях збігаються з положеннями бар'єрів парціальних ефективних потенціалів при певних значеннях орбітальних моментів $l = L_{pe3}$, що є підставою думати про можливість існування резонансів двоядерної системи ¹³C + ¹⁶O, які є джерелами підсилення ролі непружних процесів.

Визначено енергетичну залежність параметрів ${}^{13}C + {}^{16}O$ -потенціалу, що має важливе значення для дослідження реакцій ${}^{13}C({}^{16}O, X)$ з виходом екзотичних ядер. Виявлено ізотопічні відмінності в енергетичних залежностях параметрів оптичних потенціалів розсіяння ядер ${}^{12, 13}C + {}^{16}O$.

СПИСОК ЛІТЕРАТУРИ

on carbon isotopes // Physics of Atomic Nuclei. - 2007. - Vol. 70. - P. 1 - 7.

- Smirnov Yu. F., Tchuvil'sky Yu. M. Cluster spectroscopic factors for the p-shell nuclei // Phys. Rev. C. -1977. - Vol. 15. No. 1. - P. 84 - 93.
- Nilsson B. S. SPI-GENOA: an Optical Model Search Code. 1976 (Report / The Niels Bohr Institute).
- Thompson I. J. Coupled reaction channels calculations in nuclear physics // Comp. Phys. Rep. - 1988. Vol. 7. - P. 167.
- Рудчик А. Т., Чувильский Ю. М. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). - Киев, 1982. - 27 с. - (Препр. / АН УССР. Ин-т ядерных исслед.; КИЯИ-82-12).
- 14. Рудчик А. Т., Чувильский Ю. М. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач // УФЖ. - 1985. - Т. 30, № 6. - С. 819 - 825.
- 15. De Vries H., De Jager C. W., De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering // Atomic data and nuclear data tables 1987. Vol. 36. P. 495 536.
- Cook J. DFPOT a program for the calculation of double folded potentials // Comp. Phys. Com. - 1982.
 - Vol. 25, Is. 2. - P. 125 - 139.
- Cook J. DFPOT a program for the calculation of double folded potentials // Ibid. - 1984. - Vol. 35. -P. C - 775.
- Mahaux C., Ngŏ H., Satchler G. R. Casualty and the threshold anomaly of the nucleus-nucleus potential // Nucl. Phys. A. - 1986. - Vol. 449. - P. 354 - 394.

ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ РАССЕЯНИЯ ЯДЕР ¹³С + ¹⁶О И КВАЗИМОЛЕКУЛЯРНЫЙ ПОТЕНЦИАЛ ПОГЛОЩЕНИЯ

А. Т. Рудчик, Ю. О. Ширма, В. А. Плюйко, О. А. Понкратенко, И. В. Сименог

Экспериментальные данные упругого рассеяния ядер 13 C + 16 O при энергиях $E_{c.ц.м.} = 6,28 - 59,17$ МэВ проанализированы по оптической модели и методу связанных каналов реакций. Исследована энергетическая зависимость потенциала взаимодействия ядер 13 C + 16 O типа Вудса - Саксона с объемным и поверхностным поглощениями. Було установлено, что потенциал поглощения в этом рассеянии имеет квазимолекулярную форму с узким максимумом в околоповерхностной области взаимодействия ядер, который может быть резонансом двухъядерной системы 29 Si = 13 C + 16 O. Определены вклады простейших реакций передач в упругое рассеяние ядер 13 C + 16 O.

Ключевые слова: упругое рассеяние тяжелых ионов, реакции передач, оптическая модель, метод связанных каналов реакций, оптические потенциалы, спектроскопические амплитуды нуклонов и кластеров.

ENERGY DEPENDENCE OF THE ¹³C + ¹⁶O SCATTERING AND QUASI-MOLECULAR ABSORPTIAN POTENTIAL

A. T. Rudchik, Yu. O. Shyrma, V. A. Plujko, O. A. Ponkratenko, I. V. Simenog

Experimental data of the ¹³C + ¹⁶O elastic scattering at the energies $E_{c.m.} = 6.28 - 59.17$ MeV were analyzed within the optical model and coupled-reaction-channels method. The energy dependence for the ¹³C + ¹⁶O potential of the Woods - Saxon type with volume and the surface absorption was studied. It was found that the absorption potential has quasi-molecular form with narrow maximum in the surface region, which can be caused by a resonance of the ²⁹Si = ¹³C + ¹⁶O two-nuclear system. The contributions of simple transfers in the ¹³C + ¹⁶O elastic scattering were obtained.

Keywords: elastic heavy-ion scattering, transfer reactions, optical model, coupled-reaction-channels method, optical potentials, spectroscopic amplitudes of nucleons and clusters.

Надійшла до редакції 30.04.10, після доопрацювання - 29.06.10.