Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2009, volume 10, issue 4, pages 424-428.
Section: Engineering and Methods of Experiment.
Received: 30.10.2009; Published online: 30.12.2009.
PDF Full text (en)
https://doi.org/10.15407/jnpae2009.04.424

Hybrid micropixel detector at the focal plane of the mass-spectrometer

M. Campbell1, L. Tlustos1, D. Maneuski2, Val O Shea2, V. Storizhko3, V. Eremenko3, S. Homenko3, A. Shelekhov2, V. Pugatch4, O. Kovalchuk4, A. Chaus4, O. Okhrimenko4, D. Storozhik4

1European Organization for Nuclear Research (CERN), Geneva, Switzerland
2University of Glasgow, Scotland, United Kingdom
3Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy
4Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Results on testing TimePix micropixel chip as a detector of low energy ions in a focal plane of the laser mass-spectrometer are presented. Two options were tested: hybrid micro-pixel detector as well as metal micro-pixel detector (naked read-out chip with a metal mesh to improve a charge collection). For both cases a response uniformity of pixels over ion mass, energy and detection position has been thoroughly studied. The results obtained illustrate capability of both detector modes to be used for creating "electronic focal plane" of a mass-spectrometer with obvious advantages of real time devices.

Keywords: TimePix micropixel chip, hybrid micro-pixel detector, metal micro-pixel detector, mass-spectrometer, secondary electron emission.

References:

1. Information from website: http://medipix.web.cern.ch/MEDIPIX/

2. Llopart X., Ballabriga R., Campbell M. et al. Nucl. Instr. and Meth. A 581 (2007) 485. https://doi.org/10.1016/j.nima.2007.08.079

3. Nishiguchi M., Yamamoto K., Nakasuji K. et al. J. Mass Spectrom. Soc. Jpn. 54 (2006) 1. https://doi.org/10.5702/massspec.54.1

4. Kunihiro T., Nagashima K., Nakamura A. et al. Nucl. Instr. and Meth. A 470 (2001) 512. https://doi.org/10.1016/S0168-9002(01)00795-1

5. Sakamoto N., Yurimoto H. Surface and Interface Analysis 38 (2006) 1760. https://doi.org/10.1002/sia.2447

6. Nagashima K., Krot A., Huss G. et al. 40th Lunar and Planetary Science Conference. Abstract #2066 (2009).

7. Jewell A. D., Jones T. J., Sinha M. P., Nikzad S. Appl. Phys. Lett. 88 (2006) 043501. https://doi.org/10.1063/1.2166701

8. Boriskin A. I., Eremenko V. M., Mordik S. N. et al. Journal of Technical Physics 78 (2008) 11 (Rus).

9. Vykydal Z., Jakubek J., Posposhil S. Nucl. Instr. and Meth. A 563 (2006) 112. https://doi.org/10.1016/j.nima.2006.01.114

10. Chefdeville M. Journal of Physics: Conference Series 65 (2007) 012007. https://doi.org/10.1088/1742-6596/65/1/012007

11. Pugatch V., Mykhailenko Î., Kovalchuk O. et al. Nucl. Instr. and Meth. A 581 (2007) 531. https://doi.org/10.1016/j.nima.2007.08.042