![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Collective states in 230Th: band structure
A. I. Levon1, G. Graw2, Y. Eisermann2, R. Hertenberger2, N. Yu. Shirikova3, A. V. Sushkov3, P. G. Thirolf2, H.-F. Wirth2, N. V. Zamfir4
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Fakultät für Physik, Ludwig-Maximilians-Universitat Munchen, Garching, Germany
3Joint Institute for Nuclear Research, Dubna, Russia
4H. Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Abstract: Experimental data for the excited states in the deformed nucleus 230Th studied in the (p, t) reaction are analyzed. Sequences of the states are selected which can be treated as rotational bands and as multiplets of excitations. Experimental data are compared with the interacting boson model (IBM) and the quasiparticle-phonon model (QPM) calculations.
Keywords: collective bands, moments of inertia, interacting boson model, quasiparticle-phonon model.
References:1. Levon A. I., Graw G., Hertenberger R. et al. Collective states in 230Th: experimental data. Nuclear Physics and Atomic Energy 10 (2009) 357. https://jnpae.kinr.kyiv.ua/10.4/Articles_PDF/jnpae-2009-10-0357-Levon.pdf
2. Butler P. A., Nazarewicz W. Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys. 69 (1996) 349. https://doi.org/10.1103/RevModPhys.68.349
3. Maher J. V., Erskine J. R., Friedman A. M. et al. Population of 0+ States in Actinide and A≈190 Nuclides by the (p, t) Reaction. Phys. Rev. C 5 (1972) 1380. https://doi.org/10.1103/PhysRevC.5.1380
4. Wirth H. -F., Graw G., Christen S. et al. 0+ states in deformed actinide nuclei by the (p, t) reaction. Phys. Rev. C 69 (2004) 044310. https://doi.org/10.1103/PhysRevC.69.044310
5. Levon A. I., J. de Boer, Graw G. et al., The nuclear structure of 229Pa from the 231Pa(p, t)229Pa and 230Th(p, 2nγ) 229Pa reactions. Nucl. Phys. A 576 (1994) 267. https://doi.org/10.1016/0375-9474(94)90260-7
6. Ackermann B., Baltzer H., Freitag K. et al. Experimental Investigation of Vibrational Excitations in 230Th. Z. Phys. A 350 (1994) 13. https://doi.org/10.1007/BF01285047
7. Ragnarsson I., Broglia R. A. Pairing isomers. Nucl. Phys. A 263 (1976) 315. https://doi.org/10.1016/0375-9474(76)90176-7
8. Casten R. F., von Brentano P. New interpretation of the lowest K = 0 collective excitation of deformed nuclei as a phonon excitation of the γ band. Phys. Rev. C 50 (1994) 1280. https://doi.org/10.1103/PhysRevC.50.R1280
9. Baltzer H., Freitag K.,. Gunther C. et al. Nuclear levels in 228Th populated in the decay of 228Pa. Nucl. Phys. A 352 (1995) 47. https://doi.org/10.1007/BF01292760
10. Baltzer H., de Boer J., Gollwitzer A. et al. Study of Low-Lying 0+ Excitations in 228Th and 232,234,236U in the (p, t) Reaction. Z. Phys. A 356 (1996) 13. https://doi.org/10.1007/s002180050142
11. Otsuka T., Sugita M. Unified Description of Quadrupole-Octupole Collective States in Nuclei. Phys. Lett. B 209 (1988) 140. https://doi.org/10.1016/0370-2693(88)90920-3
12. Lesher S. R., Aprahamian A., Trache L. et al. New 0+ states in 158Gd. Phys. Rev. C 66 (2002) 051305(R). https://doi.org/10.1103/PhysRevC.66.051305
13. Zamfir N. V., Zhang, J. -Y., Casten R. F. Interpreting recent measurements of 0+ states in 158Gd. Phys. Rev. C 66 (2002) 057303. https://doi.org/10.1103/PhysRevC.66.057303
14. Soloviev V. G., Shirikova N. Yu. Description of low-lying vibrational Kπ not equal to 0+ states of deformed nuclei in the quasiparticle-phonon nuclear model. Z. Phys. A 334 (1989) 143. https://doi.org/10.1007/BF01294216
15. Soloviev V. G., Sushkov A. V., Shirikova N. Yu. Description of Low-Lying Vibrational States and Gamma-Ray Transitions between Excited States in 156Gd and 158Gd. Nucl. Phys. A 568 (1994) 244; https://doi.org/10.1016/0375-9474(94)90200-3
Low-Lying Nonrotational States in Strongly Deformed Even-Even Nuclei of the Rare-Earth Region. Phys. Part. Nucl. 27 (1996) 667.
16. Sun Y., Aprahamian A., Zhang J. Y., Lee C. T. Nature of excited 0+ states in 158Gd described by the projected shell model. Phys. Rev. C 68 (2003) 061301(R). https://doi.org/10.1103/PhysRevC.68.061301
17. Lo Iudice N., Sushkov A. V., Shirikova N. Yu. Microscopic structure of low-lying 0+ states in the deformed 158Gd. Phys. Rev. C 70 (2004) 064316. https://doi.org/10.1103/PhysRevC.70.064316
18. Lo Iudice N., Sushkov A. V., Shirikova N. Yu. Microscopic structure of low-lying 0+ states in deformed nuclei. Phys. Rev. C 72 (2005) 034303. https://doi.org/10.1142/9789812702265_0055
19. W. I. van Rij, Kahana S. H. Low-Lying 0+ States and (p, t) Strengths in the Actinides. Phys. Rev. Lett. 28 (1971) 50. https://doi.org/10.1103/PhysRevLett.28.50
20. Cottle P. D., Zamfir N. V. Systematic behavior of octupole states in deformed rare earth nuclei and the interacting boson approximation. Phys. Rev. C 54 (1996) 176. https://doi.org/10.1103/PhysRevC.54.176
21. Cottle P. D., Zamfir N. V. Octupole states in deformed actinide nuclei with the interacting boson approximation. Phys. Rev. C 58 (1998) 1500. https://doi.org/10.1103/PhysRevC.58.1500
22. Zamfir N. V., Kusnezov D. Octupole correlations in the transitional actinides and the spdf interacting boson model. Phys. Rev. C 63 (2001) 054306; https://doi.org/10.1103/PhysRevC.63.054306
Octupole correlations in U and Pu nuclei. Phys. Rev. C 67 (2003) 014305. https://doi.org/10.1103/PhysRevC.67.014305
23. Soloviev V. G. Theory of Atomic Nuclei: Quasiparticles and Phonons (Bristol: Institute of Physics, 1992) 324 p.
24. Broglia R. A., Riedel C., Udagava T. Nuclear spectroscopy on deformed nuclei with two-neutron transfer reactions. Nucl. Phys. A 135 (1969) 561. https://doi.org/10.1016/0375-9474(69)90005-0