DETERMINATION OF THE IMPURITIES CONCENTRATION IN TUNGSTEN, MOLYBDENUM, TIN, AND TELLURIUM TARGETS USING NEUTRON ACTIVATION ANALYSIS TECHNIQUES

A. El Abd, M. Mostafa

The fast and k₀-neutron activation analysis (k₀-NAA)methods were used to investigate the radioimpurities concentration of ¹²⁴Sb, ¹³⁴Cs, ⁶⁰Co, ⁸⁷Rb, ¹⁸²Ta, ²³³Pa, ⁶⁵Zn, ⁵⁶Fe, ^{110m}Ag, ⁵¹Cr, ⁹⁵Zr, ⁷⁵Se and ^{114m}In in the target samples WO₃, MoO₃, SnO₂ and TeO₂ which are needed for radioisotopes ¹⁸⁸Re, ^{99m}Tc, (^{113m}In and ^{117m}Sn) and ¹³¹I production respectively at the Second Egyptian Research Reactor (ETRR-2). Experimental data, procedures and theoretical treatments were described. The concentrations of radioimpurities were determined and their sources either neutron capture reactions, or threshold reactions or both were identified. The accuracy of the determined concentrations was checked using the IAEA Soil-7 reference sample.

Keywords: impurities, concentration, isotope, fast neutron flux, specific activity, threshold reactions, k_0 -neutron activation analysis, neutron spectrum parameters.