ELASTIC AND INELASTIC SCATTERING OF ¹⁸O IONS ON ¹²C NUCLEI

A. T. Rudchik, Yu. O. Shyrma, E. I. Koshchy, S. Kliczewski, B. G. Novatsky, O. A. Ponkratenko, E. Piasecki, G. P. Romanyshyna, K. Rusek, Yu. M. Stepanenko, I. Strojek, S. B. Sakuta, A. Budzanowski, L. Głowacka, I. Skwirczyńska, R. Siudak, J. Choiński, A. Szczurek

Angular distributions of the ¹²C + ¹⁸O elastic and inelastic scattering were measured at the energy $E_{lab}(^{18}O) = 105$ MeV ($E_{c.m.} = 42$ MeV). These data and data known from the literature at the energies $E_{c.m.} = 12.9 - 56$ MeV were analysed within the optical model and coupled-reaction-channels method. The sets of the Woods-Saxon (¹²C + ¹⁸O)-potential parameters were deduced and their energy dependence was studied. It was found the isotopic differences in the (¹²C + ¹⁶O)- and (¹²C + ¹⁸O)-potentials parameters and in their surface forms. The mechanisms of elastic and inelastic (¹²C + ¹⁸O)-scattering and role of transfer reactions were studied.

Keywords: nuclear reactions, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.