![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Estimation of the systematic error constituents in the calculations of the critical systems by the Monte Carlo method
V. V. Ilkovich1, V. V. Galchenko1, V. I. Makodym2
1National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine
2LLC "Holtec Ukraine", Kyiv, Ukraine
Abstract: Analysis of factors which influence on systematic error formation in the calculations of the critical systems by the Monte Carlo method for the MCNP and SCALE computer codes is executed. It has been shown that non-linearity of iteration process of calculation and uncertainty in initial neutron sources distributing effect on a systematic error. The estimation of systematic error constituents is executed on example of calculation model from the benchmark problems. Recommendations are resulted to minimization of the calculations systematic error for critical systems by the Monte Carlo method.
Keywords: critical system, systematic error, Monte Carlo method, non-linearity of iteration process, uncertainty in initial sources distributing.
References:1. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. Пер. с англ. под ред. В. Д. Виоленского (Москва: Энергоатомиздат, 1984) 124 с.
2. Соболь И. М. Метод Монте-Карло (Москва: Наука, 1972) 63 с.
3. X-5 Monte Carlo Team. MCNP - A General Monte Carlo N-Particle Transport Code, Version 5. Vol. I - III (New Mexico: Los Alamos National Laboratory, 2003).
4. SCALE: A Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation. NUREG/CR-0200, Rev. 6 (ORNL/NUREG/CSD-2R6), Vols. I, H, and m. Available from Radiation Shielding Information Center at Oak Ridge National Laboratory as CCC-545 (May 2000).
5. Validation of SCALE for Criticality Safety Analysis of VVER and RBMK Fuel Designs, NUREG/CR6736, PNNL-1369 (January 2002).
6. Forrest B. Brown. Fundamentals of Monte Carlo Particle Transport (New Mexico: Los Alamos National Laboratory, 2008).
7. Forrest B. Brown, William R. Martin, Russell D. Mosteller. Monte Carlo - Advances and Challenges (New Mexico: Los Alamos National Laboratory, 2008).
8. Майоров Л. В. Оценка смещения результатов при расчете реакторов и хранилищ ядерного топлива методом Монте-Карло. Атомная энергия 4 (2005) 243.
9. Олейник Д. С. Разработка и исследование алгоритмов расчета слабосвязанных систем методом Монте-Карло. http://mcu.vver.kiae.ru/rinfo.html
10. Brissender R., Garliick A. Biases on the estimation of Keff and its error by Monte Carlo methods. Ann. Nucl. Energy 113 (1986) 63. https://doi.org/10.1016/0306-4549(86)90095-2
11. Олейник Д. С. Расчет слабосвязанных систем методом Монте-Карло. Атомная энергия 4 (2005) 256.