SEMICLASSICAL SHELL-STRUCTURE MOMENTS OF INERTIA IN HEATED FERMI SYSTEMS

A. G. Magner, A. S. Sitdikov, A. A. Khamzin, J. Bartel, A. M. Gzhebinsky

The moment of inertia for collective rotation is derived analytically for the harmonicoscillator Hamiltonian within the cranking model for any rotation frequency and at finite temperature. Semiclassical shell-structure moments of the inertia are obtained in terms of the free-energy shell corrections through the rigid-body inertia of the statistically equilibrium rotation of a heated Fermi system by using the periodic-orbit theory. Their analytical structure in terms of the equatorial and 3-dimensional periodic orbits for the axially-symmetric harmonicoscillator potential is in perfect agreement with quantum results for critical deformations and temperatures.

Keywords: cranking model, nuclear rotations, moment of inertia, periodic orbit theory, shell-correction energy, harmonic oscillator potential.