Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2009, volume 10, issue 2, pages 185-192.
Section: Radiation Physics.
Received: 12.06.2009; Published online: 30.06.2009.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2009.02.185

The influence of the radiation-induced changes of sample properties to the temperature autooscillations

I. S. Velychko1, P. O. Selishchev1, V. I. Sugakov2

1Kyiv Taras Shevchenko National University, Kyiv, Ukraine
2Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The influence of radiation induced changes of sample properties (dislocation density, migration energy of point defects) and parameters of heat sink on autooscillations of temperature and concentration of defects are handled. Changes of these parameters influence in different way on autooscillations. For example, increase of dislocation density and decrease of heat sink calls decreasing the amplitude of autooscillations and leads to their disappearance. Period of autooscillations remains nearly constant. Decrease of migration energy of vacancies calls increase the period and amplitude of autooscillations.

Keywords: autooscillations, thermoconcentration instabilities, dislocations, theoretical model.

References:

1. Селищев П. А., Сугаков В. И. Автоколебания температуры и плотности дефектов в тонких пластинках под облучением. Физика твердого тела 30 (1988) 2611.

2. Carpenter J. M. Thermally activated release of stored chemical energy in cryogenic media. Nature 36 (1987) 358. https://doi.org/10.1038/330358a0

3. Farnum E. H., Clinard F. W., Jr., Sommer W. F. et al. Search for radiation-induced electrical degradation in alumina during spallation-neutron irradiation. J. Nucl. Mater. 212-215 (1994) 1128. https://doi.org/10.1016/0022-3115(94)91008-1

4. Schule W. Radiation-enhanced diffusion due to interstillas and dynamic crowdions. J. Nucl. Mater. 233-237 (1996) 964. https://doi.org/10.1016/0022-3115(95)00171-9

5. Sen P., Aggarwal G., Tiwari U. Dissipative Structure Formation in Cold-Rolled Fe and Ni during Heavy Ion Irradiation. Phys. Rev. Lett. 80 (1998) 97. https://doi.org/10.1103/PhysRevLett.80.97

6. Kinoshita C., Zinkle S. J. Potential and limitation of ceramics in terms of structural and electrical integrity in fusion environments. J. Nucl. Mater. 233-237 (1996) 100. https://doi.org/10.1016/S0022-3115(96)00319-4

7. Vikhliy G. A., Karpenko A. Y., Litovchenko P. G. Radiation Protection Dosimetry 66 (1996) 229. https://doi.org/10.1093/oxfordjournals.rpd.a031723

8. Varatharajan K., Nandedkar R. V. Microhardness-Microstructure Study of Aged Nimonic 90 Irradiated with Helium. Effects of Radiation on Materials. Ed. R. E. Stoller (Philadelphia, 1989) p. 263. https://doi.org/10.1520/STP24645S

9. Tetelbaum D. I., Kurilchik E. V., Latisheva N. D. Long-range effect at low-dose ion and electron irradiation of metals. Nucl. Inst. and Meth. in Phys. Research B 127-128 (1997) 153. https://doi.org/10.1016/S0168-583X(96)01113-5

10. Chatterjee R., Kanjilal A., Dunlop A. et al. The observation of oscillatory behaviour in swift heavy ion irradiated quasicrystals. Solid State Communications 120 (2001) 289. https://doi.org/10.1016/S0038-1098(01)00377-5

11. Steele J. K., Potter D. I. The disappearance of voids during 180 keV Ni+ bombardment of nickel. J. Nucl. Mater. 218 (1995) 95. https://doi.org/10.1016/0022-3115(94)00520-6

12. Schule W., Hausen H. Neutron irradiation creep in stainless steel alloys. J. Nucl. Mater. 212-215 (1994) 388. https://doi.org/10.1016/0022-3115(94)90091-4

13. Селищев П. А. Самоорганизация в радиационной физике (Київ: Вид-во "Аспект-Поліграф", 2004).

14. Mikhailovskiy V. V., Russel K. S., Sugakov V. I. Time and Space Instabilities in Binary Alloys at Phase Transitions under Irradiation. Microstructural Processes in Irradiated Materials: Materials Research Society Symphonium Proceedings 540 (1999) 667. https://doi.org/10.1557/PROC-540-667

15. Воеводин В. Н., Неклюдов И. М. Эволюция структурно-фазового состояния и радиационная стойкость конструкционных материалов (Київ: Наук. думка, 2006).