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VORTEX DIPOLE RESPONSE
IN THE GIANT DIPOLE RESONANCE ENERGY REGION

V. 1. Abrosimov, O. 1. Davidovskaya

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

The velocity fields associated with isovector excitations of spherical nuclei in the giant dipole resonance (GDR)
energy region have been studied within a semiclassical approach based on the solution of the Vlasov kinetic equation
for finite two-component Fermi systems with a moving surface. The neutron-proton asymmetry and dynamical surface
effects lead to the fragmentation of the isovector dipole strength in the energy region of the GDR on two resonances. It
was found that the velocity field has a potential character in the energy range near the main (low-energy) maximum of
the GDR. However, the velocity field reveals a vortex character in the surface region at the energy of the high-energy

maximum of the GDR.
1. Introduction

In order to obtain more the information
concerning the nature of collective excitations in
nuclei, it is expedient to consider velocity fields. The
latter describe the spatial distribution of the average
velocity of nucleons at their collective motion. They
can be determined in both quantum-mechanical [1 -
5] and semiclassical (macroscopic) approaches [6 -
8], which makes a direct comparison between them
possible.

In this paper the velocity fields for isovector
dipole excitations are considered in the framework
of the kinetic model [8]. Such semiclassical
approach provides an exact solution of the problem
of separating the spurious centre of mass motion
from the intrinsic excitations for isovector dipole
response of neutron-proton asymmetric systems.
Within this semiclassical approach, it is found that
the isovector dipole response function has two peaks
in the energy range of giant isovector resonance in
nuclei [9]. It is of interest to study the velocity fields
for resonances found in work [9], in order to
elucidate the origin of those collective excitations
and to compare them with the results of quantum-
mechanical calculations. In Section 2 we remind a
formalism of the kinetic model and will find the
response function. In Section 3 the velocity fields
for isovector dipole excitations are considered
within our approach and the results of numerical
calculations of the velocity fields associated with
isovector dipole excitations are presented.

2. The Kkinetic model

We use a semiclassical theory of linear response
of finite Fermi systems based on the Vlasov kinetic
equation for two-component systems [9] for the
study of the velocity fields associated with collective
dipole modes in spherical nuclei. At first we review
the general formalism of our kinetic approach. We
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consider a finite Fermi system consisting of neutrons
and protons and confined by a moving spherical
surface

R,(0,0,0)=R +5R (0,0,1). (1)

Here ¢ = n, p and R is the equilibrium radius. The
amplitudes OR (0, ¢, 1) give the dynamical change

of the equilibrium radius.

We assume that the isovector dipole excitations
of our system can be described by the phase-space
distribution function on, (7, p,t) given by the

linearized Vlasov equation:

0 oo
55nq(r,p, 1)+

0
p o _ . dn(e)
+—§ on,(7,p,t)—~ dq

- [6U, (7, 0)+V, (F,1)]

(r<R) 2)

with mirror reflection boundary conditions at the
moving surface

[6n,(F. B, p,. ) =0, (F. D —p,. 0] =

dns (€)

9
P de Ot

SR, (0.0.1), 3)

are the radius-vector and the
is the

where 7 and p
momentum of the particle, respectively; p,
radial momentum and p, =(0,p,,p,); ng(g) are
dnj(s) B
Cde
=—-0(e—¢}) . Here the Fermi energy of the neutron

equilibrium distribution functions and

system at ¢ = n (or the proton system at g = p) is
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N-Z

2/3
given by &l =¢, (l+z’q j , where ¢, is the
Fermi energy of nuclear matter.
We study the response of our system on the
isovector dipole external field defined as

V, (F,0) = po()a,rY,,(6). “4)

2z o and g = 2N _
Here aq—7 at g=n an aq——7 at g=p,

so that the external field V, (7,#) generates the

motion of the protons and neutrons against each
other.

In order to take into account the main effects of
the mean field change inside the system, it was
assumed that they can be reduce to the separable
residual interaction between the nucleons given by

(7 F) = K, D 'Y, (0, 9)Y5, (0, 9) - (5)
M |

with the strength parameters k.

407 € ,
Ky =K,y :_9A R—Z(F0+F0),
40 ¢ ,
Ky =Ky =SB =B, (6)

np P”_9AR2

Here FO’ and F, are isovector and isoscalar
parameters Landau, respectively.

To solve the kinetic equation (2) we take the
Fourier transform with respect to time and perform a
transition from the variables (7, p) to new variables
(r,e,l,a, B,y ) [8]. Here, ¢ is the particle's energy;
[ its angular moment; the Euler angles «,pf,y
determine the rotation to a coordinate system, whose
z-axis is directed along the vector f=|7x 13| and
y-axis along the vector 7. Then the solution of the
Vlasov equation (2), satisfying the moving-boundary
condition (3), can be presented in the following
form:

on,(r.e,1, ) =Y | 57, y (r8,1,@)0(p,) + i, y (8, )O(=p,) |( Dy (. B, y))* (7)

with

5ﬁ§,N(”,€, l,w)= 5n2,iN(r,g, l,co)(1+

a.a

R!(w) g
D K —— |+ (r.6, Lw). (8)

q'=n,p q7q

Here the function 5n23, (r,&,l,w) is the solution of the Vlasov equation for a system of noninteracting

nucleons confined by the fixed surface [10]

on’(g) & A O (nN,é&l)
5n01 rE, Z,Cl) - _ q W 6',[ eiz[a)nN(c,l)r(r,e,l)—N;/(r,e,l)] x q > , 9
q,N( ) ﬂ 88 HZZ_OO nN( ) w— a)nN (8, Z) + ”7 ( )
avi 1 o : :
where O (nN,el)=(-1)" R o 0 is the classical limit for the radial matrix elements of the quantum-
a)nN &,
. . 2 r . . .
mechanical dipole operator, @, (&,1)=n T N (& 1) are single-particle frequencies, and
T(e, 1) TI'(e, 1)

T(&, 1),

I(g,1) are the periods of the radial and "angular" particle motions.

~st

The second summand on the right-hand side of Eq. (8) o7, (r,¢,/,) is an extra term in the solution of

the Vlasov equation, which is associated with the moving surface,

on’ (&)

eti[a)r(r,s, 1)=Ny(r,e,1)]

onyy (roe,lw) =

oe sinfoT (e, 1)+ NI (&,1)]

P(R,&,)wSR (@) . (10)

Here SR (@) are the changes of the equilibrium radius R of the system induced by the external field (4),

27(r, ¢, I)|r:R =T(&,l) and 2y(r,¢, l)|r:R =1(gl).

The function R; (w) in Eq. (8) determines the variation of the mean field caused by a residual separable

interaction in the system bulk [9].
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We are interested in the response function which
is determined in the following way:

R (@)=Y Rq(w)—— > [dra,rY,,(0)3p,(F,0),

q=n,p ‘1 n,p
(11
where Jp, (F,@) is the Fourier transform with

respect to time of the density change of neutrons ( or
protons) induced by the external field V, (7,7). In

the moving-surface approximation the density
change 0p, (7, w) is defined as
. 2 0 o -
5, (F,) =~ [ dpoi, (7, ) +
+35(r—R)p,0R ()Y, (0), (12)

where p, is the neutron (or proton) equilibrium

density.

Substituting the distribution function (8) into
Eq. (12), the collective response function (11) can be
written as

R(w) = R(w)+ S(w) . (13)

Here R(w)= Z R (w) is the collective dipole
q=n,p

response function in the fixed-surface approximation

[9]. The function S(w,T) in Eq. (13) represents the

moving-surface contribution [9].
The isovector dipole strength function associated
with the found response function is given by

S(E):—%ImE(E),

(14)

where £ =ho.
The strength function (14) describes the strength
distribution of isovector dipole excitations.

3. Velocity field for isovector dipole modes

In order to obtain more the information
concerning the nature of collective excitations in
nuclei we will consider velocity fields. At
equilibrium the average velocity of particles in the
systems (the velocity field) is equal to zero. If the
system is embedded into a weak external field, the

velocity field will be different from zero. In the
kinetic theory the Fourier-transform with respect to
time of the velocity field in the linear approximation
is determined as

i(F,o)= Y, 7,i,(F,0), (15)
ii, (7, ) = ! jdpﬁaﬁq(?,ﬁ,w), (16)
mp,

where 7, =1, T, = -1 and p, is the nuclear matter

density at equilibrium.

The velocity field will be considered in the XZ
coordinate plane (7 = (x,y =0,z) or in the spherical
coordinates 7 = (r,8,¢ = 0) ) because such represen-
tation is used in quantum-mechanical approaches of

the RPA type [3]. In this case the velocity field can
be written as

u,(r,0,0 =0,0)=ul(r,0,0)e. +ul(r,0,m)e , (17)

X

where u!(r,0,) and u!(r,0,w) are the
projections of the velocity field vector onto the X
and Z axes, respectively; € ,é  are unit vectors
directed along these axes.

Using the kinetic approach for the description of
collective excitations in finite Firm systems [8], the
projections u!(r,0,w) and u!(r,0,w) of the
velocity field for dipole excitations can be written
down, after some transformations, in the form

“3(7”: 95 Cl)) = Y()O(Hao)ulqo(r: C()) - _Yzo(ea 0)“1(12 (l", 0)) 5
(18)
ul(r,0,0)=,|=Y,,(0,0)ul,(r,0). (19)

The angular dependence of the velocity field is
expressed in terms of spherical functions and
coincides with the dependence obtained in quantum-
mechanical approaches of the RPA type (see work
[3]). The functions u//(r,w) and ul,(r,w) in
Egs. (18) and (19) describe the radial dependence of
the velocity field. The following expressions can be
obtained for them:

u12(rw)——l\/§ﬂ——.[d jdzlz {-il57; \ (r.e.1,0) - 5, (1,6, 1w)] +

N
2 p(r.e,D)r
and
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(20)

(67, (r,6, @)+ 60, (r,6,1,0)]}
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1
uly (r, ) = —i\ﬁﬂiiz [as[ar 1y {iton;  (r.e, )=, (r,e, Lw)] +
3 pr N=—I
; 21)
m[é‘ﬁ;]\,(l’,g, Z,C())‘Fé‘ﬁ;,[v (r,g, l,a))]}

Thus, using the expressions given above, one can )
carry out numerical calculations of the velocity field . ggE)(frfl /h/{eV)‘ e
in the XZ plane in the case of isovector dipole N=126
excitations, see Eqgs. (18) and (19). Z=82 |

The numerical calculations of the strength — 40f ]
function S(E) (14) and the dipole velocity field, see
Egs. (18) and (19), were carried out for an 30 - J
asymmetric system with the neutron number N =
=126 and the proton number Z = 82. In the course o0l |
of calculations, the following standard values of
nuclear parameters were used: 7= 1.12 fm, ¢, =
=40 MeV, m = 1.04 MeV (10% s)’/fm’. The values  °[ I
for the surface symmetry energy parameter Q and
the Landau parameters F, and F; were taken from % s o 15 2 > 2
work [11]: 0=75MeV, F; =1.25,and F, = -0.42. E, MeV

In Fig. 1 the strength function for isovector Fig. 1. Strength distribution of isovector dipole

dipole excitations S(E) given by Eqgs. (13) and (14)
is shown. One can see that the isovector dipole
strength distribution has two maxima at energies of
12.2 and 14.6 MeV. The low-energy maximum
describes the isovector giant dipole resonance in
heavy nuclei. The high-energy maximum is
generated in neutron-rich nuclei when the dynamic
surface effects are taken into account.

Z, fm
61 A (SN
A [ S N
44 i » > » > >
A [ S VN N N
2 A [ N U Y [N
L S N U U U
04 ? L S Y T
4 A 4 4 4 4
-2 A ] 4 4 4 4
I 4 4 4« 4 4
-4+ A 4 ‘ 4 4 4
A 4 4 < 4
-6 L 4 4
T T | T T

4 0 1 2 3 4 5 6 7
X, fm

a

excitations in an asymmetric system with the neutron
number N = 126 and the proton number Z = §2.

In Fig. 2 the results of numerical calculations of
the isovector dipole velocity fields are represented.
Fig. 2 exhibits the velocity fields calculated for the
energies corresponding to low-and high-energy
maxima (see Fig. 1). It is evident, see Fig. 2, a, that

Z, fm

64 1 1 o«

24 A 4 v v - h h
N L ¢ s = N A

0+ LN L v v
A A > >y = 7

24 A N » v ~ - -
i Aoy 0y v =

44 I U 2 )

T T T T T —T 1
4 0 1 2 3 4 5 6 7
X, fm

L

b

Fig. 2. Velocity fields in the XZ plane of an asymmetric system with the neutron number N = 126 and the proton
number Z = 82 calculated for the isovector giant dipole resonance, in the moving-surface approximation, and at
energies E .. = 12.2 (a) and 14.6 MeV (b) which correspond to the energies of the low- and high-energy resonance

strength maxima, respectively (see Fig. 1).
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the velocity field at the energy of the low-energy
maximum is the motion of particles along the Z-axis
(along the direction of action of the external force
(3)) in the nucleus bulk. Small deviations from the
motion along the z-axis are observed only in the
near-surface region, due to the mirror reflection
boundary conditions at the moving surface. Such
behavior of the velocity field is in agreement with
the results obtained in the Goldhaber - Teller model
[L,5].

However, in contrast to the Goldhaber - Teller
model, the radial component of the velocity field

ul,(r,w) can differ from zero in our model, see
Eq. (8). Really, at the energy of the high-energy
maximum, the component u},(r,®) is equal to the

component u/(r,) in the near-surface region. The

velocity field at this energy has a vortex character in
this region (see Fig. 2, b). The isovector dipole
velocity fields obtained in this work agree with the
results of corresponding  quantum-mechanical
calculations carried out in the RPA framework [1, 3].

4. Conclusions

The strength function and the velocity fields for
isovector dipole excitations in spherical nuclei have
been studied in a semiclassical approach, which is
based on the Vlasov kinetic equation for a finite
two-component system with moving surface. The
expression for the velocity field in the XZ coordinate
plane, presented in terms of the particle distribution
function in the phase space, has been considered.
The analytical expression for the velocity field has
been derived in the case of collective isovector
dipole excitations. Numerical calculations have been
carried out for the strength function and the velocity
fields associated with isovector excitations in the
GDR energy region. The neutron-proton asymmetry
leads to the fragmentation of the isovector dipole
strength in the energy region of the GDR on two
resonances. The low-energy resonance reproduces
the GDR in heavy nuclei. The resonance at higher
energy is generated in neutron-proton asymmetric
nuclei by the surface symmetry potential. It is found
that the velocity field associated with low-energy
resonance has a potential character. However, the
velocity field corresponding to high-energy
resonance reveals a vortex character.
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BUXPOBHUM JUIIOJbHUM BIIAI'YK
B OBJIACTI EHEPI'IM I'TAHTCHKOI'O JUMOJIBHOI'O PEBOHAHCY

B. I. Adpocimos, O. 1. laBuaoBcbka

[onst mBuUIKOCTeH, IO MOB’s3aHI 3 130BEKTOPHUMH 30y/DKEHHSIMH c(hepudHUX siaep B o0nacTi eHepriit
riraHTcbKkoro mumonbHoro pezoHancy (I'JIP), BuB4ammch y pamkax HamiBKIACHYHOTO MiAXOIY, IO CIUPAETHCA Ha
PO3B’5130K KIHETHYHOTO PiBHAHHS BracoBa [uisi CKIHUEHHHX JABOKOMIOHEHTHUX (hepMi-CHCTEM 3 PyXOMOIO MTOBEPXHEIO.
HeiitpoH-nporoHHa acuMeTpisi Ta JMHAMiYHI TOBEpXHEBI e(eKTH NPU3BOIATH 10 (parMeHTanii i30BeKTOPHOT
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JIUToNbHOI cvii B obacti edepriii I'JIP Ha nBa pesonancu. BetaHoBIEHO, 1O TIOJIE MIBUAKOCTEH Ma€ MOTEHINIATbHUI
Xapakrtep B 00iacTi eHepriii royloBHOro (Hu3bKoeHepreTnyHoro) Makcumymy I'JIP. TIpote none mBuakocTeil BUSBIIsIE
BHUXPOBHI XapaKTep y MOBEPXHEBIil 00JIACTi MPH eHEePrii BUCOKOEHepreTHIHOro Makcumymy ['JIP.

BUXPEBOMI JUIIOJIbHBIN OTKJIUK
B OBJIACTHU SHEPTUM T'MI'AHTCKOI'O JUMOJIBHOI'O PE3OHAHCA

B. U. Aopocumos, O. U. laBuaoBckast

ITonst ckopocTel, CBA3aHHBIE C HW30BEKTOPHBIMU BO30YXXICHUSIMU cdepuueckux siep B 00nacTH 3Hepruit
THTaHTCKOTO AumoibHOro pesoHadca (I'/IP), m3ydannch B paMKax IOJYKIACCHYECKOTO IMTOAX0J1a, KOTOPBIN omnmpaercs
Ha pelIeHNe KMHETHYECKOro ypaBHEHUs BiacoBa Ui KOHEUHBIX JBYXKOMIIOHEHTHBIX (DEPMH-CHCTEM C IOABHKHON
HOBEPXHOCThIO. HEWTpOH-NPOTOHHAsT acUMMETpHs M JUHAMHYECKHE MOBEPXHOCTHbIE J(dekTsl NpUBOIAT K
(parMeHTaMu M30BEKTOPHON THUIIOJIBHOM cuibl B obsactu sHepruit I'JIP Ha 1Ba pe3oHaHca. Y CTaHOBIEHO, YTO I10JIE
CKOpOCTEH MMeeT MOTCHIIHABFHBIN XapakTep B O0JIACTH SHEPTHH TITaBHOTO (HU3KOdHEpreTudeckoro) makcumyma ['JIP.
OpHako moje CKOpOCTeH OOHAapYKMBAaeT BUXPEBOM XapakTep B IOBEPXHOCTHOH 00IAacTH NpPH JHEPTHUH BBICOKO-
sHepreTuueckoro Makcumyma I'JIP.
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