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THREE-PARTICLE STRUCTURE OF THE HALO NUCLEUS °Li

B. E. Grinyuk, I. V. Simenog

Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv

The three-particle model for °Li nucleus (a-cluster, and two halo nucleons p and ) is used to study the structure
properties of this system within the variational method with Gaussian basis. The ground triplet (J*=1") and the excited
singlet (J™ = 0") states of °Li are studied. For this purpose, potentials of the np- and No-interaction are proposed to give
description of the elastic S-phases at low energies simultaneously with correct values of the binding energy and the
charge radius of SLi nucleus. The density distributions, elastic form factors, pair correlation functions, clusterization
coefficients, and momentum distributions of °Li nucleus are studied.

Introduction

A number of approaches are known (see reviews
[1 - 3]) to treat the structure of the halo nucleus °Li
within the three-particle model (a-particle plus two
nucleons). They are competitive with the approaches
[4, 5] (see also the earlier study [6]) starting from the
six-nucleon system. Moreover, the three-particle
model can be of even a higher accuracy than
commonly assumed (see the results for “He nucleus
[7]), if the Na-interaction potentials are chosen to
reproduce the energy and radius of the nucleus in
addition to the Na-phase shifts. In the present paper,
the preliminary results reported in [8] are developed.
In addition to the structure of the ground triplet
(J"=17) state of °Li nucleus, we study the °Li singlet
(J* = 0") state and supplement the study of the main
structure functions with the analysis of the cluster
coefficients. To calculate the parameters of the
bound states with high precision, we use the
variational method in the Gaussian representation
with optimization of the bases [9, 10].

A model of Na-interaction for the
three-particle Hamiltonian

The three-particle model of halo nuclei °Li and
SHe deals with different versions of the Na-
interaction [1 - 2] constructed to reproduce the Na-
phase shifts at low-energies. We propose simple No-
interaction potentials to fit simultaneously the S-
phase shifts, energy, and rms radius of the nucleus
under consideration. Such a potential contains a
local attractive potential and a non-local (separable)
repulsive one of rather large intensity g to simulate
the Pauli principle:

I;Naﬁl’ (r):V(r) S"(r)+gu(r)_].u(rl) S"(rl) dr,.
(1)

This construction generalizes the well-known
potentials with forbidden states [11, 2] to the case of
finite intensities of the repulsion, g, and an arbitrary
u(r) which is not identical to the forbidden state
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wave function though appears to be close to it [7].
To study the ground triplet (J’=1") state of °Li,
we consider the three-particle Hamiltonian

2

2 2
A=P P Py (n,)+
2m, 2m, 2m, ”
+I}pa (’13 ) + I}na (’33 ) +Veou (1) (2)

with the interaction potential V, (r,) in the triplet

state between the halo neutron and proton, with 7,

of the type (1), and with the Coulomb interaction
potential between the proton and a-particle. In the
case of the singlet (J® = 0") state of °Li, we have the
interaction ¥V, (r,) between the halo nucleons in the

singlet state. For the ground state (J® = 07) of “He
nucleus, the Coulomb interaction is absent, and the
neutron-neutron interaction ¥V, (7,) is taken in the

singlet state. Thus, all the three states mentioned
above correspond (within the three-particle model)
to different three-particle Hamiltonians. The energy
levels of these states are below the corresponding
breakup thresholds.

The results obtained for the main structure
characteristics of °Li and ®He nuclei can be of a
rather high accuracy even for the simplest variants
of interaction potentials [7], if these potentials
reproduce the low-energy phase shifts parameters
simultaneously with the energy and the rms radii of
the nuclei. One can use realistic V), potentials (as

in ref. [1, 2]) or semi-realistic ones fitted to describe
simultaneousely the properties of three- and four-
nucleon nuclei [10]. But the main results for the halo
nucleus °Li we obtain here with the singlet and
triplet ¥, interaction potentials in a rather simple

form (Table 1). These potentials reproduce the
corresponding phase shifts (up to ~300 MeV)
together with their low-energy parameters in a quite
reasonable way. The triplet V, potential reproduces,
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in addition to the triplet phase shift and its low-

energy parameters a,,, and 1, , also the deuteron

binding energy ¢, and the deuteron charge radius

R, (Table 1). The radius R, is calculated with
regard for the proton radius r, = 0.875 fm [12].

Table 1. Parameters of the singlet and triplet V,, potentials (energies in MeV, radii in fm)

Potential V,,(7) Potential V,,(7) R
in the singlet state: Dops Tonp.s in the triplet state: Dps Tonp.s & d
4 ZJVOI; _/Bkz Vo =2Vﬂk _/0/(2
W)= 2o (o)) 23749 | 2.809 | ") 2 e Cemd) | sana | 1783 | 2224576 | 2.140
Vo, =455.265, ry;=0.647, Vo= 840.545, ry;=0.440,
V()g: —16826, Foo= 0946, V02: -146046, roo= 1.271
V03: —2824, ro3= 1.792
. 23749+ | 2.81+ . 5.424+ | 1.760+ 2.1402+
Experiment 40.008 | 005 Experiment +0.003 | +0.005 2.224575(9) £0.0028

It should be noted that any reasonable variations
of the form of local central NN-potentials at fixed
low-energy scattering parameters do not change
essentially the results for °Li and *He nuclei within
the three-particle model. This can be explained
mainly by a short range of nuclear forces in
comparison with the distances between halo
nucleons. The absolutely another situation takes
place for Na-potentials of the type (1), and one has
to choose the parameters of the potentials by fitting
the Na-phase shifts at low energies simultaneousely
with the energies and radii of the nuclei [7].

Phase shifts for potentials of the general type
(local and non-local terms),
with the Coulomb interaction involved

For local potentials, the calculation of phase
shifts within the variable phase approach is known
to be a rather simple procedure [13, 14]. But, in the
case of non-local potentials of the general type

V(r,r’) , there exists an essential difficulty. We
recall that the equation for the phase shift within the

variable phase approach [13] may contain
singularities of the exponential argument if

ks+&(s)=zn. The main difficulty is that the
position of the poles in the equation is unknown a
priori, i.e. before the solution &(s) is found. At the
same time, the solution itself has no singularities, i.e.
the singularities in the equation have no physical
sense.

In [7], it is shown how to overcome this difficulty

in the case of short-range potentials of the type (1): |

Cll(r)z WIV, (r,rl) (C1 (rl)F, (krl,fy)+ c, (rl) G,(krl,n)) dr,

instead of the nonlinear equation of the variable
phase approach [13], we deal with a system of two
linear equations without singularities. Consider now
a more general case with the Coulomb repulsion

involved. The solution u,(r) of the Schrodinger
equation (for an arbitrary partial wave)

2p 2
——7Z.,7Z,e
u, (r)+ kz_l(lrjl)_ R 12

u, (r)-

r

0

[V, (rn) w ()dr; =0, (3)
0
where

V,(ron) = 2700 [V (x,1, )P, (c0s 0)sin 040, (4)
0
can be presented in the form

u, (r) =C, (r)E (kr,?]) +C, (r) G, (kr,?]) . 9

Here, F,(kr,n) and Gl(kr,n) are the regular and

irregular  Coulomb  functions,  respectively,
2,2, . .
E#thze is the Coulomb parameter, u is the

reduced mass of the two scattering particles with
Ze and Z,e charges. The functions C,(r) and

C,(r) can be shown to obey the system of
equations

Cz,(r): _MIV’ (r.r) (C,(n)F, (krisn)+ C, (1) G, (krun)) dn

10

SANEPHA ®I3MKA TA EHEPI'ETHUKA T.10,Ne 1 2009




THREE-PARTICLE STRUCTURE

with the boundary conditions C,(0)=0 (in parti-
cular, C, (0)=1) and C,(0)=0. Then the phase
shift y, (k) (which is a part of the total phase shift

0, =y,+p,, where p, is the well-known purely
Coulomb phase shift) can be found from the relation

7, (0) i

: (7

The low-energy parameters of this phase shift can be
derived from the expansion [14] (e.g., for / = 0)

2rn
————kct k))+2kn h(n)=
exp(27n)-1 ctg (7o (K)) + 2k h (1)
=—i+lr kK> —Pr k*+ (®)
a 2 Op pOp o

P

< 1
h h ="y ——— 1 -7, d
where (n)=n ;n(nz pyec n(n)-y, an

y =0.5772... is the Euler constant. The low-energy

parameters can be also found from the
corresponding limiting equations. For example, to
calculate the nuclear-Coulomb scattering length a,

(I =0), we introduce

~ _ 2wn
G(n=a() exp(27n)—1
C, (r) =1lim Cz,fr) ©)

Then in the limit & — 0, equations (6) yield the
system of equations

¢ (r)=H, (%)]v (rn) [él (n) rL, [%}+ ¢, (n) H, [%Ddrl,

) ()=-r1, (%)]v (r.n) [él (n) nL, [%}+ C,(n) H, (%an

with the initial conditions C,(0)#0 (in particular,
C (0)=1) C,(0)=0. In (10),

L () 5%11 (2Vx),  H (x)=2xK, (2Vx),

where /; and K, are the modified Bessel functions,

and Egs.

2uZ,Z,e’
and the parameter %E %. The nuclear-
Coulomb scattering length is obtained as
G (1)
a,=-lim———=. 11
p r—o Cl (r) ( )

In the case of a potential of the type (1), the
separable part of the interaction reveals itself only in
the partial wave with /=0. Thus, the phase shifts
and their low-energy parameters for the rest orbital
states can be calculated within the known standard
procedures [13, 14].

Three-body problem within variational
approach with Gaussian basis,
and parameters of the Na-potentials

We choose the parameters of Na-potentials of the
type (1) in such a way that to reproduce the phase
shifts of the Nao-scattering at low energies
simultaneousely with the energy and charge radius
of a nucleus under consideration. Calculations of the
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(10)

energies and the wave functions are carried out with
enough precision using the known variational
method with Gaussian bases [15, 16]. We also take
advantage of the optimization schemes [9, 10] to
minimize the dimension of the basis due to special
variational procedures for nonlinear parameters. It
appears to be sufficient to take 100+150 components
of the Gaussian basis to achieve a necessary high
accuracy.

Consider the °Li ground state (J® = 17). If we

want to keep a simple model for the potential Vpa

(the same as for ¥ [7], with one Gaussian function

for the attractive part and the one for u(r) ), the

A

charge independence of nuclear forces VW =V

na?

A

and a simple form for the potentials V, (see

Table 1) and Vnn (see ref. [7]), we are faced with the
following difficulty. The number of parameters of
the potential Vpa or V. is only four, and it is
impossible to fit simultaneously the energies and
radii of both nuclei *He and °Li in addition to the na-
and po-phase shifts. For example, the calculated

energy of °Li appears to be ~ -4.98 MeV (instead of
the experimental value -3.70 MeV) in the case

Vm =V with the parameters used for “He [7]. In

the present paper, we consider two following

11
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possibilities to keep the potentials V,, and V,, in

the simplest form. The first one (further denoted as
(D)) is to break the charge symmetry (Vm # I}m) and
to take I}pa and V,, with somewhat different

parameters. The na- and pa-phase shifts are fitted
independently. Due to the additional independent

(denoted as (II)) is to save the charge symmetry
Vp I/na >

potential to fit the experimental values for °Li alone.
One version of such a potential is given in Table 2 as
well. The third possibility with a more complicated
form of potentials (including the account of the
tensor forces in the NN-interaction, and the /-

but to adjust new parameters of the No-

o =

parameters at our disposal, we can reproduce the depepdenc-e of No-potentials) needs the separate
experimental values of the energies and radii for consideration.
both nuclei (for °Li, Table 2). The second possibility
Table 2. Parameters of the I}pa potentials used in the calculations of the °Li ground state
and the calculated radii of this nucleus (energies in MeV, radii in fm)

I}pa potential E,, R, . T r. T R, R, R,
V(r)=—43.1 lexp(—(r/2.34)2) -3.699 | 2.560 | 2.553 | 3.187 | 4203 | 4.314 | 3.020 | 3.123 | 1.323
g=135.0MeV fm>,
u(r)= ﬂ’3/4exp(—(r/2.67)2)

(II)s Vpa: Vna
Vi(r)= —45.13exp(—(r/2.37)2) -3.699 | 2.560 | 2.568 | 3.193 | 4.281 | 4313 | 3.081 | 3.112 | 1.337
2 =140.0 MeV fm>,
u(r) = 7r‘3/4exp(—(r/2.7)2)
-3.699+ | 2.56+ | 2.45+
Experiment +0.001 | +0.05 | +0.07
[17] [18] [19]

For the potentials from Table 2, the pa-phase
shifts in the S, state are in a reasonable agreement
with the experimental phase shift at low energies up
to the breakup threshold (~22 MeV). In both cases,
we have fitted the energy and the rms charge radius
of °Li nucleus. We recall that the binding energy of
SLi is greater than that of *He mainly due to the fact
that the triplet potential V,, is somewhat more
attractive than the singlet potential V,, (in spite of

the presence of additional Coulomb repulsion in
SLi). At the same time, the charge radius of °Li is
greater than that of °He mainly due to the presence
of one proton in the halo of °Li. It follows from the
calculations that the matter radius R, of °Li (see

Table 2) appears to be almost the same as that of °He
[7] and somewhat greater than the experimental

value R, (°Li)=2.45+0.07 fmn [19].

Table 3. Parameters of the I}pa potential used in the calculations for SLi singlet (J™ = 0" state,

and the calculated radii of this state (energies in MeV, radii in fm)

V., potential E, ("=0"| R, R, T T T R, R, R,
V,(r)= —50.208exp(—(r/2.342)2) -0.13 2.813 | 2.803 | 4.663 | 4.704 | 4.824 | 3.562 | 3.668 | 1.392
g=135.0MeV fm>,
u(r)= 7r’3/4exp(—(r/2.7)2)

Experiment -0.13

Consider now °Li nucleus in the loosely bound
singlet state (J® = 0") with an energy of about
-0.13 MeV. To have the concordant results
simultaneousely for all the three states (i.e. “He and

12

SLi in the ground state, and °Li in the singlet state)
is, all the more, impossible for simple models of
potentials. We slightly adjust the parameters of the
potential V), to obtain the experimental value of the
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SLi singlet state energy (with the use of the singlet
potential V,, for the halo nucleons in the form
presented in Table 1). In Table 3, the parameters of
one version of such a potential V), are given. The
corresponding phase shift in the S;,, state is close to
the experimental data below the breakup threshold.
The potential V,, used together with V), is the same
as that proposed to study °He nucleus [7]. The
obtained rms radius R, (see Table 3) can only

predict the order of magnitude for this parameter,
because, as mentioned above, by varying the
potentials V), and V,,, one can reproduce any radius
within a wide range of its values at the fixed
experimental energy of °Li in this state and the fixed
Na-phase shift at low energies. The rest rms radii are
correlated with R, .

Wave function, density distributions
and form factor of °Li nucleus

The properties of the structure functions of °Li
and ®He nuclei become more understandable if one
considers their wave functions. In particular, the

P(r.Q
P(r.0)

wave function squared, averaged over the angles,
and multiplied by the factor »’p” ,

2
s

P(r,p) = rszIdQ|<D(r,p) (12)

is known to have two peaks (Fig. 1) corresponding
to configurations of the so-called “cigar” (where the
halo nucleons are at the opposite sides, and the o-
particle is at the center) and “triangle” (where two
coupled nucleons of the halo and the a-particle move
around the center of mass of °Li). Since a free
dineutron does not exist in a bound state, while the
deuteron does exist, the configuration of a “triangle”
is more pronounced in °Li nucleus than in °He. The
wave function of the singlet state of °Li has a
structure more close to that of *He than to that of the
SLi ground state (see Fig. 1, c), but the radii of the
singlet state of °Li are greater (compare the Tables 2
and 3, and the results for “He [7]) mainly due to the
Coulomb repulsion and some difference in nuclear
potentials.

P(r.p)

Fig. 1. Probability density P(r,p) (12) for °He (a) and °Li (b) nuclei in the ground state,
and (c) — the same for °Li in the singlet state.

Here and further, we give the results for structure
functions obtained with potential (II) from Table 2.
Almost the same results are obtained with potential ().

The density distribution p,(r) of the point-like
particle j with respect to the center of mass of the
system with the wave function |®) is known to be

pi(r)=(@ s(r—(r,-R_,))[®).  (13)

In Fig. 2, the density distributions of the “point-
like” neutron and proton of the halo of °Li, and the
distribution of neutrons in the halo of °He are
presented (see Fig. 2, a), as well as the a-particle
center-of-mass density distribution (see Fig. 2, b) is
shown. A pronounced “halo” in the distribution of
the a-particle center-of-mass is seen for both nuclei,
and this structure is explained by the presence of two
different configurations in the total wave function.
For the singlet state of °Li nucleus, the same
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dependences look very similar to those for the °Li
ground state, but they have somewhat greater radii
due to the fact that the energy of °Li nucleus in the
singlet state is more close to the °Li — a+p +n
threshold (=0.13 MeV) than the energy of the
ground state of °Li to the °Li — a + d threshold
(=1.47 MeV). The both binding energies are close to
zero in comparison with the average kinetic or
potential energy of the system (each of them is about
25-30 MeV).

To determine the total charge distributions of °Li
and °He with regard for the charge distribution of the
a-particle itself and that of the proton (for °Li), one
has to calculate

2 , Ny
L) =51 Puca (E=0) L (P

1 r ’ ’
+§jpp(r -r') nch‘p(r )dr',

13
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P o) = [P (=¥ o ()Y, (14)

where n . (r) and n, (r) are the charge density

distributions of “He and of the proton, respectively.
In Fig. 3, the calculated charge density distributions
(normalized to unity) for °Li and °He nuclei are

compared with that for ‘He. After the integrations in
(14), the calculated charge distributions appear to be
smooth functions. If the normalization of p_,(r) for

SLi and °He nuclei were chosen proportional to Z,
then both densities would be close at »=0.

1.0 1.5 2.0
r, fm

b

Fig. 2. Density distributions of the halo neutron (curves /) and proton (curve 2) in °Li and *He nuclei. The dashed lines
show rzp(r) -0.5 for the neutron (curves 3) and proton (curve 4) (a). Distributions of the a-particle in the same nuclei.

The dashed lines depict 7*p, ., (r)-10 (b).

o

o

=
1

0.03 1

p,(N/(Ze), fm”*

o

o

N
1

0.014

0.00

0.04

0.03 1

0.02 1

p,(NI(Ze), fm™

0.01 1

0.00+<=

Fig. 3. Charge density distributions for “He and °Li (the curve for “He — experimental data) (). Charge density
distribution for the singlet state of °Li (solid curve /) compared with that of the ground state of °Li (solid curve 2) (b).

In the figures, the dashed lines depict r*p,, (r) -

The rms radii of the °Li nucleus are listed in
Tables 2 and 3. They can be compared with the
corresponding radii of “He [7]. Due to the motion of
the oa-particle around the center of mass of the
system in °Li and °He nuclei and also due to the
presence of a proton in the °Li halo, the charge rms
radii obey the inequality R > thﬂ(, v > R

chLi ch,* He *

Tables 2 and 3 contain also the rms radii R, for the
“point-like” particles of the halo and of the a-

particle center-of-mass distribution. We also
calculate the rms relative distances 7, :

14

1

Ty z(_[”zgu(’”) dr) 2

where g, (r) are the pair correlation functions (see

(15)

below). The values of R, and r; are interrelated as
follows:

. m, 2
P = (Hﬂ]zef +(1+—f]Rj. - _R2,(16)

m; m, m,m;

where i, j, and k are the numbers of different
particles of the three-particle system. We calculated
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R, and 7; independently and verified the obtained

results by using (16).
The form factors corresponding to the charge
density distributions (14) are known to be

th, *He (6]2) =Fcm (q2) .F;h, He (qz) ’
(17)

Fy @) 2, @)y (0) 535 £ ),

where F

a c.m.

(qz) and F, (qz) are the form factors
obtained within the three-particle model with the
“point-like” particles, while F " 4He(q2) is the
experimental charge form factor of *He, and
Sen» (qz) is that of the proton. In Fig. 4, the charge

form factors (17) are shown and compared with the

1~

)l

N 2

104

IF..(a

10°

10"

experimental data for *He and °Li. The position of
q.,, in the case of the *He form factor is explained
mainly by the behavior of the *He form factor. Due
(qz) (see Fig. 4, the
upper curve a), relation (17) yields the inequality
F, 6He(qz)‘< F (qz)‘ In the case of °Li nucleus,

ch, ‘He
the form factor F, (qz) (see Fig. 4, b, the curve p)

to a slowly decreasing F

a cm.

of the “point-like” proton distribution plays its role
as well. Since the behavior of the form factors at

small ¢* is determined by the value of R, and our

potentials are fitted to reproduce the experimental
charge radii, the coincidence of the calculated form

factors with the experimental data at small ¢° is
good in all the cases.

15
10" ‘ <
] 2He o
N: 1 o S
S 10-2': { N e~
R o
1074 /
i P
10"
E T
0 5

Fig. 4. The charge form factor of °He (solid line) (a). The same for °Li (b). The experimental form factor of °Li is
shown by squares, and the dashed lines depict the experimental form factor of *He.

Pair correlation functions, coefficients
of clusterization, and momentum distributions

Consider the pair correlation functions

g,(r)=(@[(r=(;-rp) [0).  (8)

The function g, (r) is the probability density to find

the pair of particles i and j at a distance r inside the
system under consideration. For the pairwise local
potentials, the average potential energy is directly
expressed in terms of the integrals over the
potentials multiplied by the corresponding
correlation functions. These functions are also used
below to estimate the probability for two-particle
clusters to exist in °Li and *He nuclei.

In Fig.5, we present the pair correlation

functions for °Li nucleus. The function g, (r) for
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°Li (similar to g,, () for He [7]) demonstrates an

essential decrease at short distances, which is
explained by the presence of a short-range repulsion
in the interaction potential V, .

Consider the amplitude [20]
furs(P)=[0i(r,) @0, (x,.p) dr,. (19)

which depends on the distance p of the a-particle
from the center of mass of °Li (the same function is
denoted by I(p) in ref. [21]). In (19), ¢, (7, )

denotes the deuteron wave function. The quantity
fop p)‘z (Fig. 6, a, curve I) is the value reflecting

the probability density “to find the deuteron” at a
definite distance p from the a-particle. There are

two peaks in the ;2 fo, (p)‘z profiles (see Fig. 6, a,

15
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curve 5), which correspond to the configurations of
“cigar” (short distances) and “triangle” (at ~3+4 fm).
The coefficient of clusterization

=111, (P) rdp

(20)

allows one to estimate the probability “to find a
deuteron” in °Li nucleus. It appears to be 0.70 (about

0.025

0.020

3

0.015 1

g(n), fm

0.010 1

0.0054-

0.000

0.09 is the contribution of the “cigar”, and about
0.61 is that of the “triangle”). We note that, in the
case of a bound system of three identical particles at
the extremely large coupling constant [20], the
corresponding clusterization coefficient approaches

(3/2)3/4 (2/(1 + \/3/_2))3 ~0.9847, whereas this coef-

ficient approaches zero as the coupling constant
decreases to the two-particle critical value.

0.020
0.015-
b
=
=
~20.010
O
(@)
0.0054 -
0.000 ; ; ; ;
0 1 2 4 5
r, fm
b

Fig. 5. Pair correlation functions for °Li in the ground state (/ - g,,(r); 2 - g,,(r)-5; 3 - g..(r)-5) (@)

The same for °Li in the singlet state (b). The dashed lines depict the deuteron wave function squared.

0.035

p, fm

a

Fig. 6. The amplitudes of clusterization (squared) for °Li. Curve I/ shows

2
3 B bei, apfcluster(p)‘ 5 and 4 -

curve 2 is for

(in Fig. 6, a) and 13 (in Fig. 6, b).

The deuteron wave function squared is close to
the correlation function g,, (r) (the latter has, of
course, a somewhat smaller radius), and this is valid

not only for °Li nucleus (see, e.g., the calculations
for three- and four-nucleon nuclei [9, 10]). Thus, we

can consider the modified value f, . (p)

16

2
fo; wfdum(p)‘ (@). The same for *He, where curve 1 shows

0.08

0.07 +

0.06 1

-3

€ 0.05

0.04 4

Ife), f

0.03 1
0.02 1

0.01 /

0.00 4+ T ==
0 2 4 6 8
p, fm

b
2
sti’d(p)‘ ; curve 2 -

E N
'

2
f(’Li,d—cluster(p)‘ >

2
f(’He, nnfc/uster(p)

, and

Sone an_clmr(p)‘z (b). The dashed lines depict p?|f (p)|2, with the correspondence 1455, 256

similar to (19), but with /g, (r) instead of ¢, (7).

2
Then the value of |f, . (p)‘ is to be the

“deuteron cluster” coefficient of clusterization. Its
profile (see Fig. 6, a, curve 2, and dashed line 6 — for

2

2
P\ foy, d_clmr(p)‘) is seen to be close to
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fon o ( p)r. The corresponding modified coefficient

C"™™ s defined by a relation similar to (20), and

it is equal to 0.75 (0.08 due to the “cigar”

configuration, and 0.67 comes from the “triangle”).
The modified -coefficients of clusterization

£ (p) enable one to estimate the probability

° He, nn—cluster
for the dineutron cluster to exist in *He nucleus,
although a free dineutron does not exist. In Fig. 6, b,
we present the dineutron cluster coefficient

/ ( )2. We find the coefficient C**)
©He, nn—cluster P

nn—cluster

= (.73 (the first peak in Fig. 6, b results in 0.32, and
the second one gives 0.41). It is natural that the
“cigar” configuration plays a somewhat greater role
in °He than that in °Li, because the np subsystem in
the °Li halo prefers to be a dineutron cluster due to

fona(P) 2 Cop™ W (26p) = C, p' exp(=rp—nn(2xp)),

2

where « = 2( Eey _gd)'uad zﬂad_zez
n? ’ Wk
fhpy =—2eE4 and w., . (r) is the Whittaker

/ua + /ud :
function. Comparing the results of our calculation of
feo, ,(p) (reliable up to p~15 fm, if about

300 Gaussian functions of the basis are used) with
the asymptotics (21) (coming into force already at

~6 fm), we have C,=0.693 fm™? and
Nar C, =246 fm"?  for potential (I), and

C,=0.705 fm™ and ~f4z C,=2.50 fm™? for
potential (ZI) from Table 2. The estimate is seen to
depend a little on the model of No-interaction, and
this is consistent with other calculations [2, 22].

Consider the momentum distribution of particles.
For the j-th particle, it is given by

n, (k)= (@] 5(k-(k,-K,, ) [®), (2

where ‘d)> is the momentum representation of the

wave function of the system. The average kinetic
energy of a neutron in the halo of ®He [7] appears to

be (E,(,.n> =11.12 MeV, and that of the a-particle is
(Ekm >a =5.935 MeV. The average kinetic energies

n

of the proton and neutron in the halo of °Li are
(Ey),=12.56MeV  and  (E,,), =12.77 MeV,

respectively, and that of the a-particle is
(Ekm >a =3.23 MeV. The momentum distributions

SANEPHA ®I3UKA TA EHEPI'ETHUKA T.10,Nel 2009

V,, in the triplet state is more attractive than V,, in

the singlet state. We can also estimate the
probability for a five-nucleon cluster (a/N-cluster in
the S, state) to exist inside a °Li nucleus, by using
the modified coefficients of clusterization. The

2 2
f(’Li, ap—cluster (p)‘ and f(’Li, an-—cluster (p)

o : (°Li) (°Li)
almost coincide. We obtain C ~ C

=~
ap—cluster an—cluster

curves for

~0.60 for °Li nucleus. For °He nucleus, the
~0.21.

The analysis of the asymptotics of amplitude (19)
at large o enables us to estimate the constant of

. . 6
calculation results in C ¢ “¢)

an—cluster

asymptotic normalization for the process °Li — a +
+ d, and this gives directly the corresponding nuclear
vertex constant [21, 22]. The asymptotics of (19) is
known to be

21)

are depicted in Fig. 7. The change of regimes in the
neutron halo momentum distribution is explained by
the fact [23] that the asymptotics at k —> oo is

2
proportional to 5 (k) N[sz(k)j and reflects the short-

range repulsion present in the V,,
Simpler models of potentials without short-range

The same

potentials.

repulsion give no “tail” in n, (k).
regularities are observed for n, (k) in calculations

of other authors [24]. The momentum distribution of
the neutron 7, (k) in the °Li halo (Fig. 7, a) is very

close to that of the proton, 7,(k), which is not

shown.
The momentum distribution of the a-particle
center of mass is depicted in Fig. 7, . Two regimes

in the behavior of n, (k) are explained, to a great
extent, by the presence of two configurations (the

“cigar” and “triangle”) in the wave functions of the
nuclei with 4 = 6 (the former makes the main
contribution at high &, and the latter does at low
k?). Since the “triangle” configuration in °Li is more

pronounced, and the “cigar” is less probable as
compared to that in “He, the momentum distribution

n, (k) at high k° is positioned lower for °Li than

that for *He.
In the singlet state of °Li nucleus, the momentum

distributions of the proton 7, (k) and the neutron

n, (k) of the halo are also close to each other and

surely manifest greater role of small momenta and
the less presence of large ones in comparison with

17
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those of n, (k) for He due to the fact that, in the
singlet state, °Li has a less binding energy and a
greater size of the halo than °He nucleus does. The
same reason is responsible for the n, (k) profile
behavior for the singlet state of °Li in comparison

with that for °He. It should be noted that, though the
ground state of °Li has a greater binding energy than

0.1—;"
o ]
ha ]
ZIE-35
E

1E-4 4

1E-5

IE6+——F—T T 7T T 7T T 7T 71
0 2 4 6 8 10 12 14 16 18 20

K%, fm?

a

“He does, the momentum distribution n, (k) of the
a-particle center-of-mass of °Li in the ground state is
also positioned lower than n, (k) for °He at large
momenta and, vice versa, higher at small ones (see
Fig. 7, b), but the reason for this is the suppressed

“sigar” configuration in the °Li ground state (due to
the bound deuteron cluster).

0.1
ERN
0.01 4

E 163
X1E-44
c
1E-54
1E-6 1
1E-74

lE-8-'|'|'|'|'|'|'|'|'|'\
0 2 4 6 8 10 12 14 16 18 20

K%, fm?
b

Fig. 7. The momentum distributions of a halo neutron in °Li (curve /) and °He (curve 2) (a). The momentum
distribution of the a-cluster in the same nuclei (curve / - °Li, and curve 2 - ®He) (b). In both figures () and (b), the
dashed lines depict k°n(k) (curve 3 - for °Li, and curve 4 - for *He).

To summerize, we note that the three-particle
model for halo nucleus °Li, as well as for He [7],
manifests a rather high accuracy. The proposed No-
potentials are fitted so that to reproduce the phase
shifts simultaneously with the energy and the radius

of a nucleus, and the main structure functions of the
nucleus are found and analysed. A nonsingular
method to find the phase shifts for the potentials
with local and non-local operator terms and with
additional Coulomb interaction is proposed.
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Nuclear-matter distributions of halo nuclei from

TPUYACTUHKOBA CTPYKTYPA TAJIO-SIPA °Li
b. €. I'puniok, 1. B. Cumenor

V tpuuacTHHKOBIH Mozeni sapa °Li (a-kmacTep i 1Ba HYKIOHH Talo — p Ta 1) JOCHIKEHO CTPYKTYpPHI BIAaCTHBOCTI
CHCTEMH Ha OCHOBI NPENM3iHHOTO BapiallifHOTO METOAY 3 rayccOigHMM 0a3rcoM. BHBYEHO OCHOBHHI TPHILICTHUIT
(J*=1%) i 36ymxenuit cunrnerauii (J*=0") cranu °Li. 3anponoHoBaHo noTeHuianu np- Ta No-B3aeMOii, 10 OMHCYIOTh
S-dbasy TPYXKHOTO PO3CISHHS TIPH HU3BKHX EHEPrifX OJHOYACHO 3 EHEPrier0 i 3apsAIoBMM paxiycoM sapa °Li.
JocinimkeHo po3noaiim ryctuay, popMbakTop, napHi kopenauiiiai GyHkuii, koedinieHTn Kiactepusanii Ta iMITyJIbCHI
PpO3MOIiIH.

TPEXYACTUYHASI CTPYKTYPA T'AJIO-SIJIPA °Li
B. E. I'puniok, H. B. Cumenor

B Tpexuactuunoit Mozenu suipa °Li (o-KiacTep ¥ 1Ba HYKIOHA Fajlo — p U 1) HCCIIENOBAHbI CTPYKTYPHBIE CBOMCTBA
CHCTEMBbl Ha OCHOBE INPEUU3MOHHOTO BAapHAIIOHHOTO METOJa C TrayCCOMIAIbHBIM Oa3zucoM. I3ydeHbl OCHOBHOE
tpumiernoe (J* = 17) u Bo36yxaennoe cunrieroe (J* = 01) cocrosuus °Li. IIpeanoxkeHsl noTeHImans! np- u Na-
B3aHMOJICHCTBHI, KOTOPBIE OMUCHIBAIOT S-(a3y yrpyroro paccesHus NpH HU3KUX SHEPTUSIX OJHOBPEMEHHO C SHEeprHei
¥ 3apsIOBBIM pagmycoM siapa ‘Li. ViccieoBaHbl pacnpeeneHus mioTHOCTH, GOpM(paKTOp, TapHble KOPPEIAIHOHHbIE
GbyHKIMH, K03 GHUIMEHTH! KJIaCTepH3allii U UMITYJIbCHBIE pacipeieNeHus.
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