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The three-particle model for 6Li nucleus (α-cluster, and two halo nucleons p and n) is used to study the structure 

properties of this system within the variational method with Gaussian basis. The ground triplet (Jπ = 1+) and the excited 
singlet (Jπ = 0+) states of 6Li are studied. For this purpose, potentials of the np- and Nα-interaction are proposed to give 
description of the elastic S-phases at low energies simultaneously with correct values of the binding energy and the 
charge radius of 6Li nucleus. The density distributions, elastic form factors, pair correlation functions, clusterization 
coefficients, and momentum distributions of 6Li nucleus are studied. 
 

Introduction 
 
A number of approaches are known (see reviews 

[1 - 3]) to treat the structure of the halo nucleus 6Li 
within the three-particle model (α-particle plus two 
nucleons). They are competitive with the approaches 
[4, 5] (see also the earlier study [6]) starting from the 
six-nucleon system. Moreover, the three-particle 
model can be of even a higher accuracy than 
commonly assumed (see the results for 6He nucleus 
[7]), if the Nα-interaction potentials are chosen to 
reproduce the energy and radius of the nucleus in 
addition to the Nα-phase shifts. In the present paper, 
the preliminary results reported in [8] are developed. 
In addition to the structure of the ground triplet 
(Jπ = 1+) state of 6Li nucleus, we study the 6Li singlet 
(Jπ = 0+) state and supplement the study of the main 
structure functions with the analysis of the cluster 
coefficients. To calculate the parameters of the 
bound states with high precision, we use the 
variational method in the Gaussian representation 
with optimization of the bases [9, 10].  

 
A model of Nα-interaction for the  

three-particle Hamiltonian 
 
The three-particle model of halo nuclei 6Li and 

6He deals with different versions of the Nα-
interaction [1 - 2] constructed to reproduce the Nα-
phase shifts at low-energies. We propose simple Nα-
interaction potentials to fit simultaneously the S-
phase shifts, energy, and rms radius of the nucleus 
under consideration. Such a potential contains a 
local attractive potential and a non-local (separable) 
repulsive one of rather large intensity g to simulate 
the Pauli principle: 
 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
ˆ    .NV Ψ r V r Ψ r gu r u r Ψ r dα = + ∫ r

(1) 
This construction generalizes the well-known 
potentials with forbidden states [11, 2] to the case of 
finite intensities of the repulsion, g, and an arbitrary 
u(r) which is not identical to the forbidden state 

wave function though appears to be close to it [7]. 
To study the ground triplet (Jπ=1+) state of 6Li, 

we consider the three-particle Hamiltonian 
 

( )
22 2
31 2

12
ˆ

2 2 2 np
p n

H V r
m m mα

= + + + +
pp p  

 

( ) ( )13 23 13
ˆ ˆ ( )p n CoulV r V r V rα α+ + +                (2) 

 
with the interaction potential 12( )npV r  in the triplet 

state between the halo neutron and proton, with N̂V α  
of the type (1), and with the Coulomb interaction 
potential between the proton and α-particle. In the 
case of the singlet (Jπ = 0+) state of 6Li, we have the 
interaction 12( )npV r  between the halo nucleons in the 
singlet state. For the ground state (Jπ = 0+) of 6He 
nucleus, the Coulomb interaction is absent, and the 
neutron-neutron interaction 12( )nnV r  is taken in the 
singlet state. Thus, all the three states mentioned 
above correspond (within the three-particle model) 
to different three-particle Hamiltonians. The energy 
levels of these states are below the corresponding 
breakup thresholds. 

The results obtained for the main structure 
characteristics of 6Li and 6He nuclei can be of a 
rather high accuracy even for the simplest variants 
of interaction potentials [7], if these potentials 
reproduce the low-energy phase shifts parameters 
simultaneously with the energy and the rms radii of 
the nuclei. One can use realistic NNV  potentials (as 
in ref. [1, 2]) or semi-realistic ones fitted to describe 
simultaneousely the properties of three- and four-
nucleon nuclei [10]. But the main results for the halo 
nucleus 6Li we obtain here with the singlet and 
triplet npV  interaction potentials in a rather simple 
form (Table 1). These potentials reproduce the 
corresponding phase shifts (up to ~300 MeV) 
together with their low-energy parameters in a quite 
reasonable way. The triplet npV  potential reproduces, 
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in addition to the triplet phase shift and its low-
energy parameters ,np ta  and 0 ,np tr , also the deuteron 
binding energy dε  and the deuteron charge radius 

dR  (Table 1). The radius dR  is calculated with 
regard for the proton radius 0.875pr =  fm [12]. 

 
Table 1. Parameters of the singlet and triplet Vnp potentials (energies in MeV, radii in fm) 

 
Potential Vnp(r) 

in the singlet state: ,np sa  0 ,np sr  Potential Vnp(r) 
in the triplet state: ,np ta  0 ,np tr  dε  dR  

( ) ( )( )
3

2
0 0

1

exp /np k k
k

V r V r r
=

= −∑  

V01 = 455.265, r01 = 0.647, 
V02 = -168.26, r02 = 0.946, 
V03 = -28.24, r03 = 1.792 

 
-23.749 

 

 
2.809 

 

( ) ( )( )
2

2
0 0

1

exp /np k k
k

V r V r r
=

= −∑  

V01 = 840.545,  r01 = 0.440, 
V02 = -146.046,  r02 = 1.271 

 
5.424 

 

 
1.783 

 

 
2.224576 

 

 
2.140 

 

Experiment -23.749± 
±0.008 

2.81± 
±0.05 Experiment 5.424± 

±0.003 
1.760± 
±0.005 2.224575(9) 2.1402± 

±0.0028 
 
It should be noted that any reasonable variations 

of the form of local central NN-potentials at fixed 
low-energy scattering parameters do not change 
essentially the results for 6Li and 6He nuclei within 
the three-particle model. This can be explained 
mainly by a short range of nuclear forces in 
comparison with the distances between halo 
nucleons. The absolutely another situation takes 
place for Nα-potentials of the type (1), and one has 
to choose the parameters of the potentials by fitting 
the Nα-phase shifts at low energies simultaneousely 
with the energies and radii of the nuclei [7]. 

 
Phase shifts for potentials of the general type 

(local and non-local terms),  
with the Coulomb interaction involved 

 
For local potentials, the calculation of phase 

shifts within the variable phase approach is known 
to be a rather simple procedure [13, 14]. But, in the 
case of non-local potentials of the general type 
( )ˆ , 'V r r , there exists an essential difficulty. We 

recall that the equation for the phase shift within the 
variable phase approach [13] may contain 
singularities of the exponential argument if 

( )ks s nδ π+ = . The main difficulty is that the 
position of the poles in the equation is unknown a 
priori, i.e. before the solution ( )sδ  is found. At the 
same time, the solution itself has no singularities, i.e. 
the singularities in the equation have no physical 
sense. 

In [7], it is shown how to overcome this difficulty 
in the case of short-range potentials  of  the  type (1):  

instead of the nonlinear equation of the variable 
phase approach [13], we deal with a system of two 
linear equations without singularities. Consider now 
a more general case with the Coulomb repulsion 
involved. The solution ( )lu r  of the Schrödinger 
equation (for an arbitrary partial wave) 

 

( ) ( ) ( )
2

1 22
2

2

2
1

 l l

Z Z el l
u r k u r

r r

µ⎛ ⎞
⎜ ⎟+″ + − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

( ) ( )1 1 1
0

,  0l lV r r u r dr
∞

− =∫ ,               (3) 

where 
 

( ) ( ) ( )1 1 1
0

, 2 , cos sinl lV r r rr V P d
π

π θ θ θ= ∫ r r ,   (4) 

 
can be presented in the form 
 

( ) ( ) ( ) ( ) ( )1 2,  ,l l lu r C r F kr C r G krη η= + .     (5) 
 

Here, ( ),lF kr η  and ( ),lG kr η  are the regular and 
irregular Coulomb functions, respectively, 

2
1 2

2

Z Z e
k

µ
η ≡  is the Coulomb parameter, µ  is the 

reduced mass of the two scattering particles with 
1Z e  and 2Z e  charges. The functions ( )1C r  and 

( )2C r  can be shown to obey the system of 
equations 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1 2 1 1 1
0

2 1 1 1 1 2 1 1 1
0

,
,  ,  ,  ,

,
,  ,  ,  

l
l l l

l
l l l

G k r
C r V r r C r F k r C r G k r d r

k

F k r
C r V r r C r F k r C r G k r d r

k

η
η η

η
η η

∞

∞

⎧ ′ = +⎪
⎪
⎨

′⎪ = − +⎪⎩

∫

∫
               (6) 

 



THREE-PARTICLE STRUCTURE 

ЯДЕРНА  ФІЗИКА  ТА  ЕНЕРГЕТИКА   Т. 10, № 1   2009 11

 

with the boundary conditions ( )1 0 0C ≠  (in parti-
cular, ( )1 0 1C = ) and ( )2 0 0C = . Then the phase 
shift ( )l kγ  (which is a part of the total phase shift 

l l lδ γ β= + , where lβ  is the well-known purely 
Coulomb phase shift) can be found from the relation 
 

( )( ) ( )
( )

2

1

liml r

C r
tg k

C r
γ

→∞
= .                     (7) 

 

The low-energy parameters of this phase shift can be 
derived from the expansion [14] (e.g., for l = 0) 
 

( ) ( )( ) ( )0
2  2  

exp 2 1
k ctg k k hπη γ η η

πη
+ =

−
 

 

2 3 4
0 0

1 1 ...
2 p p p

p

r k P r k
a

= − + − + ,                    (8) 
 

where ( ) ( )2
2 2

1

1 ln
( )n

h
n n

η η η γ
η

∞

=

≡ − −
+∑ , and 

0.5772...γ =  is the Euler constant. The low-energy 
parameters can be also found from the 
corresponding limiting equations. For example, to 
calculate the nuclear-Coulomb scattering length pa  
(l = 0), we introduce 
 

( ) ( ) ( )1 1
2

exp 2 1
C r C r πη

πη
≡

−
, 

 

( ) ( )2
2 0

lim
k

C r
C r

k→
≡ .                       (9) 

 
Then in the limit 0k → , equations (6) yield the 
system of equations 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 1 0 1 1 1 1 1 2 1 1 1

0

1 1
2 1 0 1 1 1 1 1 2 1 1 1

0

,    ,

 ,    

r rrC r H V r r C r r L C r H d r
R R R

r rrC r r L V r r C r r L C r H d r
R R R

∞

∞

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞′ = +⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪
⎨

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞′⎪ = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

∫

∫
               (10) 

 

with the initial conditions ( )1 0 0C ≠  (in particular, 

( )1 0 1C = ) and ( )2 0 0C = . In Eqs. (10), 

( ) ( )1 1
1 2L x I x
x

≡ , ( ) ( )1 12 2H x xK x≡ , 

where 1I  and 1K  are the modified Bessel functions, 

and the parameter 
2

1 2
2

21 Z Z e
R

µ
≡ . The nuclear-

Coulomb scattering length is obtained as 
 

( )
( )

2

1

limp r

C r
a

C r→∞
= − .                          (11) 

 
In the case of a potential of the type (1), the 
separable part of the interaction reveals itself only in 
the partial wave with 0l = . Thus, the phase shifts 
and their low-energy parameters for the rest orbital 
states can be calculated within the known standard 
procedures [13, 14]. 

 
Three-body problem within variational 

approach with Gaussian basis,  
and parameters of the Nα-potentials 

 
We choose the parameters of Nα-potentials of the 

type (1) in such a way that to reproduce the phase 
shifts of the Nα-scattering at low energies 
simultaneousely with the energy and charge radius 
of a nucleus under consideration. Calculations of the 

energies and the wave functions are carried out with 
enough precision using the known variational 
method with Gaussian bases [15, 16]. We also take 
advantage of the optimization schemes [9, 10] to 
minimize the dimension of the basis due to special 
variational procedures for nonlinear parameters. It 
appears to be sufficient to take 100÷150 components 
of the Gaussian basis to achieve a necessary high 
accuracy. 

Consider the 6Li ground state (Jπ = 1+). If we 
want to keep a simple model for the potential ˆ

pV α  

(the same as for n̂aV  [7], with one Gaussian function 
for the attractive part and the one for ( )u r ), the 

charge independence of nuclear forces ˆ ˆ
p nV Vα α= , 

and a simple form for the potentials ˆ
pnV  (see 

Table 1) and n̂nV  (see ref. [7]), we are faced with the 
following difficulty. The number of parameters of 
the potential ˆ

pV α  or n̂aV  is only four, and it is 
impossible to fit simultaneously the energies and 
radii of both nuclei 6He and 6Li in addition to the nα- 
and pα-phase shifts. For example, the calculated 
energy of 6Li appears to be ≈ -4.98 MeV (instead of 
the experimental value -3.70 MeV) in the case 
ˆ ˆ

p nV Vα α=  with the parameters used for 6He [7]. In 
the present paper, we consider two following 
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possibilities to keep the potentials ˆ
pV α  and n̂aV  in 

the simplest form. The first one (further denoted as 
(I)) is to break the charge symmetry ( ˆ ˆ

p nV Vα α≠ ) and 

to take ˆ
pV α  and n̂V α  with somewhat different 

parameters. The nα- and pα-phase shifts are fitted 
independently. Due to the additional independent 
parameters at our disposal, we can reproduce the 
experimental values of the energies and radii for 
both nuclei (for 6Li, Table 2). The second possibility 

(denoted as (II)) is to save the charge symmetry 
ˆ ˆ

p nV Vα α= , but to adjust new parameters of the Nα-
potential to fit the experimental values for 6Li alone. 
One version of such a potential is given in Table 2 as 
well. The third possibility with a more complicated 
form of potentials (including the account of the 
tensor forces in the NN-interaction, and the l-
dependence of Nα-potentials) needs the separate 
consideration. 

 

Table 2. Parameters of the ˆ
pV α  potentials used in the calculations of the 6Li ground state  

and the calculated radii of this nucleus (energies in MeV, radii in fm) 
 

 
For the potentials from Table 2, the pα-phase 

shifts in the S1/2 state are in a reasonable agreement 
with the experimental phase shift at low energies up 
to the breakup threshold (~22 MeV). In both cases, 
we have fitted the energy and the rms charge radius 
of 6Li nucleus. We recall that the binding energy of 
6Li is greater than that of 6He mainly due to the fact 
that the triplet potential Vnp is somewhat more 
attractive than the singlet potential Vnn (in spite of 

the presence of additional Coulomb repulsion in 
6Li). At the same time, the charge radius of 6Li is 
greater than that of 6He mainly due to the presence 
of one proton in the halo of 6Li. It follows from the 
calculations that the matter radius mR  of 6Li (see 
Table 2) appears to be almost the same as that of 6He 
[7] and somewhat greater than the experimental 
value ( )6 Li 2.45 0.07mR = ±  fm [19]. 

 

Table 3. Parameters of the ˆ
pV α  potential used in the calculations for 6Li singlet (Jπ = 0+) state,  

and the calculated radii of this state (energies in MeV, radii in fm) 
 

 
Consider now 6Li nucleus in the loosely bound 

singlet state (Jπ = 0+) with an energy of about            
-0.13 MeV. To have the concordant results 
simultaneousely for all the three states (i.e. 6He and 

6Li in the ground state, and 6Li in the singlet state) 
is, all the more, impossible for simple models of 
potentials. We slightly adjust the parameters of the 
potential Vpα to obtain the experimental value of the 

ˆ
pV α  potential 6 Li

E  chR  mR  npr  nr α  pr α  nR  pR  Rα  
(I),  Vpα ≠ Vnα (Vnα see [7])  

( )( )2
0( ) 43.11exp 2.34V r r= − −  

135.0g = MeV fm-3, 

( )( )23/4( ) exp 2.67u r rπ −= −  

 
-3.699 

 
2.560 

 
2.553 

 
3.187 

 
4.203 

 
4.314 

 
3.020 

 
3.123 

 
1.323 

(II), Vpα= Vnα 

( )( )2
0( ) 45.13exp 2.37V r r= − −

140.0g =  MeV fm-3, 

( )( )23/4( ) exp 2.7u r rπ −= −  

 
-3.699 

 
2.560 

 
2.568 

 
3.193 

 
4.281 

 
4.313 

 
3.081 

 
3.112 

 
1.337 

Experiment 
-3.699± 
±0.001 

[17] 

2.56± 
±0.05 
[18] 

2.45± 
±0.07 
[19] 

      

ˆ
pV α  potential 6 Li

E (Jπ = 0+) chR  mR  npr  nr α  pr α  nR  pR  Rα  

( )( )2
0( ) 50.208exp 2.342V r r= − −

135.0g = MeV fm-3, 

( )( )23/4( ) exp 2.7u r rπ −= −  

- 0.13 2.813 2.803 4.663 
 

4.704 4.824 3.562 3.668 1.392 

Experiment -0.13         
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6Li singlet state energy (with the use of the singlet 
potential Vnp for the halo nucleons in the form 
presented in Table 1). In Table 3, the parameters of 
one version of such a potential Vpα are given. The 
corresponding phase shift in the S1/2 state is close to 
the experimental data below the breakup threshold. 
The potential Vnα used together with Vpα is the same 
as that proposed to study 6He nucleus [7]. The 
obtained rms radius chR  (see Table 3) can only 
predict the order of magnitude for this parameter, 
because, as mentioned above, by varying the 
potentials Vpα and Vnα, one can reproduce any radius 
within a wide range of its values at the fixed 
experimental energy of 6Li in this state and the fixed 
Nα-phase shift at low energies. The rest rms radii are 
correlated with chR . 

 

Wave function, density distributions  
and form factor of 6Li nucleus 

 

The properties of the structure functions of 6Li 
and 6He nuclei become more understandable if one 
considers their wave functions. In particular, the 

wave function squared, averaged over the angles, 
and multiplied by the factor 2 2r ρ  , 

 

( ) ( )
22 2, Ω Φ ,P r r dρ ρ= ∫ r ρ ,                (12) 

 
is known to have two peaks (Fig. 1) corresponding 
to configurations of the so-called “cigar” (where the 
halo nucleons are at the opposite sides, and the α-
particle is at the center) and “triangle” (where two 
coupled nucleons of the halo and the α-particle move 
around the center of mass of 6Li). Since a free 
dineutron does not exist in a bound state, while the 
deuteron does exist, the configuration of a “triangle” 
is more pronounced in 6Li nucleus than in 6He. The 
wave function of the singlet state of 6Li has a 
structure more close to that of 6He than to that of the 
6Li ground state (see Fig. 1, c), but the radii of the 
singlet state of 6Li are greater (compare the Tables 2 
and 3, and the results for 6He [7]) mainly due to the 
Coulomb repulsion and some difference in nuclear 
potentials. 

 

6
5

4
3

2
1

0 0
1

2 3 4 5 6

P
(r

,ρ
)

ρα
 , fm

r
nn  , fm

 

6
5

4
3

2
1

0 0
1

2
3

4 5 6

P
(r

,ρ
)

ρα
 , fm

r
np  , fm

 

7
6

5
4

3
2

1
0 0 1 2 3 4 5 6 7

P
(r

,ρ
)

ρα
 , fm

r
np  , fm

 
a b c 

 

Fig. 1. Probability density ( , )P r ρ  (12) for 6He (a) and 6Li (b) nuclei in the ground state,  
and (c) – the same for 6Li in the singlet state. 

 

Here and further, we give the results for structure 
functions obtained with potential (II) from Table 2. 
Almost the same results are obtained with potential (I). 

The density distribution ( )j rρ  of the point-like 
particle j with respect to the center of mass of the 
system with the wave function Φ  is known to be 

 

( ) ( )( ). .Φ   Φj j c mrρ δ= − −r r R .          (13) 
 

In Fig. 2, the density distributions of the “point-
like” neutron and proton of the halo of 6Li, and the 
distribution of neutrons in the halo of 6He are 
presented (see Fig. 2, a), as well as the α-particle 
center-of-mass density distribution (see Fig. 2, b) is 
shown. A pronounced “halo” in the distribution of 
the α-particle center-of-mass is seen for both nuclei, 
and this structure is explained by the presence of two 
different configurations in the total wave function. 
For the singlet state of 6Li nucleus, the same 

dependences look very similar to those for the 6Li 
ground state, but they have somewhat greater radii 
due to the fact that the energy of 6Li nucleus in the 
singlet state is more close to the 6Li → α + p + n 
threshold (≈0.13 MeV) than the energy of the 
ground state of 6Li to the 6Li → α + d threshold 
(≈1.47 MeV). The both binding energies are close to 
zero in comparison with the average kinetic or 
potential energy of the system (each of them is about 
25 - 30 MeV). 

To determine the total charge distributions of 6Li 
and 6He with regard for the charge distribution of the 
α-particle itself and that of the proton (for 6Li), one 
has to calculate 

 

( ) ( ) ( )6 4 . ., , 

2  
3 c mch Li ch He

r n r dαρ ρ ′ ′ ′= − +∫ r r r  
 

( ) ( ), 
1  
3 p ch pn r dρ ′ ′ ′+ −∫ r r r , 
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( ) ( ) ( )6 4 . ., , 
 c mch He ch He

r n r dαρ ρ ′ ′ ′= −∫ r r r ,         (14) 
 

where ( )4, ch He
n r  and ( ), ch pn r  are the charge density 

distributions of 4He and of the proton, respectively. 
In Fig. 3, the calculated charge density distributions 
(normalized to unity) for 6Li and 6He nuclei are 

compared with that for 4He. After the integrations in 
(14), the calculated charge distributions appear to be 
smooth functions. If the normalization of ( )ch rρ  for 
6Li and 6He nuclei were chosen proportional to Z, 
then both densities would be close at 0r = . 
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Fig. 2. Density distributions of the halo neutron (curves 1) and proton (curve 2) in 6Li and 6He nuclei. The dashed lines 
show ( )2 0.5r rρ ⋅  for the neutron (curves 3) and proton (curve 4) (a). Distributions of the α-particle in the same nuclei. 

The dashed lines depict ( )2
 . . 10c mr rαρ ⋅  (b). 
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Fig. 3. Charge density distributions for 6He and 6Li (the curve for 4He – experimental data) (a). Charge density 
distribution for the singlet state of 6Li (solid curve 1) compared with that of the ground state of 6Li (solid curve 2) (b). 

In the figures, the dashed lines depict ( )2
chr rρ . 

 
The rms radii of the 6Li nucleus are listed in 

Tables 2 and 3. They can be compared with the 
corresponding radii of 6He [7]. Due to the motion of 
the α-particle around the center of mass of the 
system in 6Li and 6He nuclei and also due to the 
presence of a proton in the 6Li halo, the charge rms 
radii obey the inequality 6 6 4, , ,ch Li ch He ch He

R R R> > . 

Tables 2 and 3 contain also the rms radii jR  for the 
“point-like” particles of the halo and of the α-
particle center-of-mass distribution. We also 
calculate the rms relative distances ijr : 

( )( )
1

2 2  ij ijr r g r d= ∫ r ,                     (15) 
 

where ( )ijg r  are the pair correlation functions (see 
below). The values of jR  and ijr  are interrelated as 
follows: 
 

2
2 2 2 21 1 ji k

ij i j k
j i i j

mm m
r R R R

m m m m
⎛ ⎞ ⎛ ⎞

= + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
, (16) 

 

where i, j, and k are the numbers of different 
particles of the three-particle system. We calculated 
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jR  and ijr  independently and verified the obtained 
results by using (16). 

The form factors corresponding to the charge 
density distributions (14) are known to be  

 

( ) ( ) ( )6 4
2 2 2

  ., , c.mch He ch He
F q F q F qα= ⋅ ,  

(17) 

( ) ( ) ( ) ( ) ( )6 4
2 2 2 2 2

  . , , , 

2 1
3 3c.m p ch pch Li ch He

F q F q F q F q f qα= ⋅ + ⋅ , 

 

where ( )2
 .c.mF qα  and ( )2

pF q  are the form factors 

obtained within the three-particle model with the 
“point-like” particles, while ( )4

2
, ch He

F q  is the 

experimental charge form factor of 4He, and 
( )2

, ch pf q  is  that of  the proton. In Fig. 4, the charge 

form factors (17) are shown and compared with the 

experimental data for 4He and 6Li. The position of 
2
minq  in the case of the 6He form factor is explained 

mainly by the behavior of the 4He form factor. Due 
to a slowly decreasing ( )2

 .c.mF qα  (see Fig. 4, the 

upper curve α), relation (17) yields the inequality 
( ) ( )6 4

2 2
, , ch He ch He

F q F q< . In the case of 6Li nucleus, 

the form factor ( )2
pF q  (see Fig. 4, b, the curve p) 

of the “point-like” proton distribution plays its role 
as well. Since the behavior of the form factors at 
small 2q  is determined by the value of chR , and our 
potentials are fitted to reproduce the experimental 
charge radii, the coincidence of the calculated form 
factors with the experimental data at small 2q  is 
good in all the cases. 
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Fig. 4. The charge form factor of 6He (solid line) (a). The same for 6Li (b). The experimental form factor of 6Li is 
shown by squares, and the dashed lines depict the experimental form factor of 4He. 

 
Pair correlation functions, coefficients  

of clusterization, and momentum distributions 
 

Consider the pair correlation functions 
 

( ) ( )Φ ( )  Φi jij
g r δ= − −r r r .         (18) 

 

The function ( )ijg r  is the probability density to find 
the pair of particles i and j at a distance r inside the 
system under consideration. For the pairwise local 
potentials, the average potential energy is directly 
expressed in terms of the integrals over the 
potentials multiplied by the corresponding 
correlation functions. These functions are also used 
below to estimate the probability for two-particle 
clusters to exist in 6Li and 6He nuclei. 

In Fig. 5, we present the pair correlation 
functions for 6Li nucleus. The function ( )npg r  for 

6Li (similar to ( )nng r  for 6He [7]) demonstrates an 
essential decrease at short distances, which is 
explained by the presence of a short-range repulsion 
in the interaction potential npV . 

Consider the amplitude [20] 
 

( ) ( ) ( )6 6
*

, 
 ,  d np np npLi d Li

f r dρ ϕ Φ= ∫ r ρ r ,    (19) 
 

which depends on the distance ρ  of the α-particle 
from the center of mass of 6Li (the same function is 
denoted by ( )I ρ  in ref. [21]). In (19), ( )d nprϕ  
denotes the deuteron wave function. The quantity 

( )6

2

, Li d
f ρ  (Fig. 6, a, curve 1) is the value reflecting 

the probability density “to find the deuteron” at a 
definite distance ρ  from the α-particle. There are 
two peaks in the ( )6

22
, Li d

fρ ρ  profiles (see Fig. 6, a, 
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curve 5), which correspond to the configurations of 
“cigar” (short distances) and “triangle” (at ~3÷4 fm). 
The coefficient of clusterization 
 

( )6

6

2( )
, 

  Li
d Li d

C f dρ= ∫ ρ                (20) 
 

allows one to estimate the probability “to find a 
deuteron” in 6Li nucleus. It appears to be 0.70 (about  

0.09 is the contribution of the “cigar”, and about 
0.61 is that of the “triangle”). We note that, in the 
case of a bound system of three identical particles at 
the extremely large coupling constant [20], the 
corresponding clusterization coefficient approaches 

( ) ( )( )33 43 2 2 1 3 2 0.9847+ ≈ , whereas this coef-

ficient approaches zero as the coupling constant 
decreases to the two-particle critical value. 
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Fig. 5. Pair correlation functions for 6Li in the ground state (1 - ( )npg r ; 2 - ( ) 5pg rα ⋅ ; 3 - ( ) 5ng rα ⋅ ) (a).  
The same for 6Li in the singlet state (b). The dashed lines depict the deuteron wave function squared. 
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Fig. 6. The amplitudes of clusterization (squared) for 6Li. Curve 1 shows ( )6

2

, Li d
f ρ ; curve 2 - ( )6

2

, Li d cluster
f ρ

−
; 

3 - ( )6

2

, Li p cluster
f

α
ρ

−
; and 4 - ( )6

2

, Li n cluster
f

α
ρ

−
 (a). The same for 6He, where curve 1 shows ( )6

2

, He nn cluster
f ρ

−
, and 

curve 2 is for ( )6

2

, He n cluster
f

α
ρ

−
 (b). The dashed lines depict ( ) 22 fρ ρ , with the correspondence 1↔5, 2↔6 

(in Fig. 6, a) and 1↔3 (in Fig. 6, b). 
 
The deuteron wave function squared is close to 

the correlation function ( )npg r  (the latter has, of 
course, a somewhat smaller radius), and this is valid 
not only for 6Li nucleus (see, e.g., the calculations 
for three- and four-nucleon nuclei [9, 10]). Thus, we 
can consider the modified value ( )6 , Li d cluster

f ρ
−

 

similar to (19), but with ( )npg r  instead of ( )d rϕ . 

Then the value of ( )6

2

, Li d cluster
f ρ

−
 is to be the 

“deuteron cluster” coefficient of clusterization. Its 
profile (see Fig. 6, a, curve 2, and dashed line 6 – for 

( )6

22
, Li d cluster

fρ ρ
−

) is seen to be close to 
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( )6

2

, Li d
f ρ . The corresponding modified coefficient 

6( )Li
d clusterC −  is defined by a relation similar to (20), and 

it is equal to 0.75 (0.08 due to the “cigar” 
configuration, and 0.67 comes from the “triangle”). 

The modified coefficients of clusterization 
( )6 , He nn cluster

f ρ
−

 enable one to estimate the probability 

for the dineutron cluster to exist in 6He nucleus, 
although a free dineutron does not exist. In Fig. 6, b, 
we present the dineutron cluster coefficient 

( )6

2

, He nn cluster
f ρ

−
. We find the coefficient 

6( )He
nn clusterC − = 

= 0.73 (the first peak in Fig. 6, b results in 0.32, and 
the second one gives 0.41). It is natural that the 
“cigar” configuration plays a somewhat greater role 
in 6He than that in 6Li, because the np subsystem in 
the 6Li halo prefers to be a dineutron cluster due to 

npV  in the triplet state is more attractive than nnV  in 
the singlet state. We can also estimate the 
probability for a five-nucleon cluster (αN-cluster in 
the S1/2 state) to exist inside a 6Li nucleus, by using 
the modified coefficients of clusterization. The 

curves for ( )6

2

, Li p cluster
f

α
ρ

−
 and ( )6

2

, Li n cluster
f

α
ρ

−
 

almost coincide. We obtain 
6( )Li
p clusterCα −  ≈ 

6( )Li
n clusterCα − ≈ 

≈ 0.60 for 6Li nucleus. For 6He nucleus, the 
calculation results in 

6( )H e
n clusterCα − ≈ 0.21. 

The analysis of the asymptotics of amplitude (19) 
at large ρ  enables us to estimate the constant of 
asymptotic normalization for the process 6Li → α + 
+ d, and this gives directly the corresponding nuclear 
vertex constant [21, 22]. The asymptotics of (19) is 
known to be 

 

( ) ( ) ( )( )6
1 1

1, , 
2

2  exp ln 2A ALi d
f C W C

ρ ρη
ρ ρ κρ ρ κρ η κρ− −

→∞ →∞−
→ → − − ,                     (21) 

 

where 
( )

1
2

6

2

2  d dLi
E αε µ

κ
⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, 
2

2
d Zeαµη
κ

= , 

d
d

d

α
α

α

µ µ
µ

µ µ
=

+
, and ( )1

2, W rη−  is the Whittaker 

function. Comparing the results of our calculation of 
( )6 , Li d

f ρ  (reliable up to ~ 15ρ  fm, if about 

300 Gaussian functions of the basis are used) with 
the asymptotics (21) (coming into force already at 
~6 fm), we have 0.693AC =  fm-1/2 and 

4  2.46ACπ =  fm-1/2 for potential (I), and 
0.705AC =  fm-1/2 and 4  2.50ACπ =  fm-1/2 for 

potential (II) from Table 2. The estimate is seen to 
depend a little on the model of Nα-interaction, and 
this is consistent with other calculations [2, 22].  

Consider the momentum distribution of particles. 
For the j-th particle, it is given by 

 

( )( ). .( ) Φ   Φj j c mn k δ= − −k k K ,      (22) 
 

where Φ  is the momentum representation of the 

wave function of the system. The average kinetic 
energy of a neutron in the halo of 6He [7] appears to 
be kin n

E = 11.12 MeV, and that of the α-particle is 

kinE
α
= 5.935 MeV. The average kinetic energies 

of the proton and neutron in the halo of 6Li are 
kin p

E = 12.56 MeV and kin n
E = 12.77 MeV, 

respectively, and that of the α-particle is 
kinE

α
= 3.23 MeV. The momentum distributions 

are depicted in Fig. 7. The change of regimes in the 
neutron halo momentum distribution is explained by 
the fact [23] that the asymptotics at k →∞  is 

proportional to ( ) ( ) 2

2~ nn
n

V k
n k

k
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and reflects the short-

range repulsion present in the NNV  potentials. 
Simpler models of potentials without short-range 
repulsion give no “tail” in ( )nn k . The same 
regularities are observed for ( )nn k  in calculations 
of other authors [24]. The momentum distribution of 
the neutron ( )nn k  in the 6Li halo (Fig. 7, a) is very 
close to that of the proton, ( )pn k , which is not 
shown. 

The momentum distribution of the α-particle 
center of mass is depicted in Fig. 7, b. Two regimes 
in the behavior of ( )n kα  are explained, to a great 
extent, by the presence of two configurations (the 
“cigar” and “triangle”) in the wave functions of the 
nuclei with A = 6 (the former makes the main 
contribution at high 2k , and the latter does at low 

2k ). Since the “triangle” configuration in 6Li is more 
pronounced, and the “cigar” is less probable as 
compared to that in 6He, the momentum distribution 

( )n kα  at high 2k  is positioned lower for 6Li than 
that for 6He. 

In the singlet state of 6Li nucleus, the momentum 
distributions of the proton ( )pn k  and the neutron 

( )nn k  of the halo are also close to each other and 
surely manifest greater role of small momenta and 
the less presence of large ones in comparison with 
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those of ( )nn k  for 6He due to the fact that, in the 
singlet state, 6Li has a less binding energy and a 
greater size of the halo than 6He nucleus does. The 
same reason is responsible for the ( )n kα  profile 
behavior for the singlet state of 6Li in comparison 
with that for 6He. It should be noted that, though the 
ground state of 6Li has a greater binding energy than 

6He does, the momentum distribution ( )n kα  of the 
α-particle center-of-mass of 6Li in the ground state is 
also positioned lower than ( )n kα  for 6He at large 
momenta and, vice versa, higher at small ones (see 
Fig. 7, b), but the reason for this is the suppressed 
“sigar” configuration in the 6Li ground state (due to 
the bound deuteron cluster). 
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Fig. 7. The momentum distributions of a halo neutron in 6Li (curve 1) and 6He (curve 2) (a). The momentum 
distribution of the α-cluster in the same nuclei (curve 1 - 6Li, and curve 2 - 6He) (b). In both figures (a) and (b), the 
dashed lines depict ( )2k n k  (curve 3 - for 6Li, and curve 4 - for 6He). 

 
To summerize, we note that the three-particle 

model for halo nucleus 6Li, as well as for 6He [7], 
manifests a rather high accuracy. The proposed Nα-
potentials are fitted so that to reproduce the phase 
shifts simultaneously with the energy and the radius  

of a nucleus, and the main structure functions of the 
nucleus are found and analysed. A nonsingular 
method to find the phase shifts for the potentials 
with local and non-local operator terms and with 
additional Coulomb interaction is proposed. 
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ТРИЧАСТИНКОВА  СТРУКТУРА  ГАЛО-ЯДРА  6Li 

 
Б. Є. Гринюк,  І. В. Сименог 

 
У тричастинковій моделі ядра 6Li (α-кластер і два нуклони гало – p та n) досліджено структурні властивості 

системи на основі прецизійного варіаційного методу з гауссоїдним базисом. Вивчено основний триплетний 
(Jπ = 1+) і збуджений синглетний (Jπ = 0+) стани 6Li. Запропоновано потенціали np- та Nα-взаємодій, що описують 
S-фазу пружного розсіяння при низьких енергіях одночасно з енергією і зарядовим радіусом ядра 6Li. 
Досліджено розподіли густини, формфактор, парні кореляційні функції, коефіцієнти кластеризації та імпульсні 
розподіли. 

 
ТРЕХЧАСТИЧНАЯ  СТРУКТУРА  ГАЛО-ЯДРА  6Li 

 
Б. Е. Гринюк,  И. В. Сименог 

 
В трехчастичной модели ядра 6Li (α-кластер и два нуклона гало – p и n) исследованы структурные свойства 

системы на основе прецизионного вариационного метода с гауссоидальным базисом. Изучены основное 
триплетное (Jπ = 1+) и возбужденное синглетное (Jπ = 0+) состояния 6Li. Предложены потенциалы np- и Nα-
взаимодействий, которые описывают S-фазу упругого рассеяния при низких энергиях одновременно с энергией 
и зарядовым радиусом ядра 6Li. Исследованы распределения плотности, формфактор, парные корреляционные 
функции, коэффициенты кластеризации и импульсные распределения. 
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