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TEMPERATURE DEPENDENCE OF GIANT DIPOLE RESONANCE WIDTH
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The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the
thermo field dynamics is applied to calculate a temperature dependence of the spreading width I' Y ofa giant
dipole resonance. Numerical calculations are made for'®° Sn and ** Pb nuclei. It is found that the width It

increases with T. The reason of this effect is discussed as well as a relation of the present approach to other
ones existing in the literature.

Introduction

GDR was found in a hot rotating nucleus formed in a collision of two heavy ions as early as
1981 [1]. As a result of quite sophisticated experiments performed during 20 years some integral
characteristics of GDR were carefully studied. In particular, it is well proved that the energy of
GDR and the exhaustion of the model independent Energy Weighted Sum Rule are quite stable
against temperature increase. At the same time one observes a strongly increasing width of GDR
with temperature of a nucleus.

Several processes contribute to the GDR width at finite temperature [2 - 4]. Among them are
quantum fluctuations which exist already in a cold nucleus: the Landau damping, the coupling with
surface vibrations, the collisional damping (i.e. the coupling to incoherent two-particle — two-hole
excitations) and the coupling to the single-particle continuum. At T # 0 the thermal fluctuations of a
nuclear shape appear. Moreover, since a hot compound nucleus usually carries a large angular
momentum, the rotation also affects the GDR width.

Extracting the GDR characteristics from the measured y-spectra is not an absolutely unam-
biguous procedure. These spectra are in fact a weighted sum of the y-ray yields emitted by many
nuclei populated in the decay of the initial compound nucleus. The extracted GDR characteristics
depend to some extent on assumptions about a shape of El strength function, and mass- and
temperature-dependence of its parameters [5]. Also, the temperatures inferred from experimental
excitation energy of a hot compound nucleus are sensitive to the level density parameter which is
not known very accurately. In this respect, the impressive example is the fate of a phenomenon of
the so-called saturation of the GDR width at T > 3,5 - 4 MeV. After the appearance of new data and

reanalysis of the previous ones [6, 7] the GDR width I" ; was found permanently increasing up to

T = 3,2 MeV. It was also established that the information about GDR at higher temperatures cannot

be extracted reliably from the existing data.
Even a more ambiguous problem is the disentangling of different contributions to the expe-

rimental GDR width. Fortunately, due to the experiments with inelastically scattered a-particles
which yield a compound system with a small angular momentum [8] the effects of rotation and
temperature on the GDR width was separated. However, in most cases conclusions can be made
only by comparing the final results of theoretical calculations with the measured experimental
value. Sometimes conclusions appear to be controversial. For example, the adiabatic coupling mo-
del [9] reasonably describes the experimental data on the GDR width in '** Sn and ***Pb supposing
the intrinsic GDR width I" almost independent of temperature. According to studies [9], the main
effect, which explains increasing of the total I', , is the thermal nuclear shape fluctuations. On the

other hand, according to [10], the behavior of the GDR parameters in the compound nucleus % Mo
cannot be explained by assuming the intrinsic width be a constant. Moreover, the recent measure-

ment of the GDR width in 2 Sn at temperature T~ 1 MeV [11] reveals an over-estimation of T,

by the adiabatic coupling model.
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Different theoretical approaches also predict a quite different T-dependence for the

spreading GDR width I'*. The first calculations of the thermal behavior of T'* were performed in
[12]. At that time, it was already well known that the coupling of a single-particle motion with
collective surface vibrations is the main mechanism of damping of giant resonances in cold nuclei.
In [12], a temperature dependence of this coupling was studied with the Matsubara thermal Green's
function technique and it was found that the GDR width was nearly constant when T increased. The
physical ground of these calculations was the Nuclear Field Theory [13] treating a nucleus as a
system of interacting quasiparticles and vibrations (RPA phonons). In more recent studies [14] the

very weak dependence I'* on T was explained by the cancellation effect between self-energy and
vertex contributions. However, several years ago in [15], where the problem was studied within the
same formalism and under the same physical assumptions as in [12, 14], an increment of the spre-
ading GDR width with T was found.

The latter result is in correspondence with that of the approaches taking into account the
coupling with incoherent 2p-2h excitations (the collisional damping) [4, 16, 17]. In most cases,
calculations predict the increase of the GDR width with increasing in temperature; although the
calculated width exhibits weaker temperature dependence and numerical predictions are quite
sensitive to the effective nucleon-nucleon interaction used.

Thus, the current situation with the temperature dependence of the GDR spreading width is
not clear. That is why new approaches to the problem are desirable. We present here results of the
approach developed in [18 - 20] and based on the two main ingredients: the quasiparticle-phonon
nuclear model (QPM) [21 - 23] and the thermo field dynamics (TFD) [24, 25]. The physical basis of
QPM is very similar to that of the nuclear field theory, and both the models have produced quite
close results as applied to nuclear structure calculations at T=0. In Refs. [18 - 20], the QPM was
extended to finite temperatures by the use of the TFD formalism. Here we report the results of
numerical calculations within the TFD-QPM approach. More detailed discussion of the subject can
be found in [26].

QPM at finite temperature
Thermal RPA

We start with the QPM Hamiltonian which consists of phenomenological mean fields for
protons and neutrons and separable multipole particle-hole interactions with both the isoscalar and
isovector terms

H= Z(E,-—A,)c;fmc,m—lz Y "+ oM, (OM,, (p7) )
2

jmt Au t,p=t1

where M} (r) is the single-particle multipole operator

i e : » =+
M@= T (M| 1) -
Jimyjamy

Here ¢} ,c,, are creation and annihilation operators of particles and holes with quantum

numbers n, 1, j. m = j, m. The index 7 is an isotopic one and takes two values t = n, p. The symbol
£" means that the summation is taken only over neutron or proton single-particle (hole) states and
changing the sign of t means changing ne>p. The parameters (¥, y are the coupling constants

of the isoscalar and isovector multipole-multipole interactions, respectively.
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To avoid unnecessary comphcatlons in the forthcommg formulae, we omit the palrmg
interaction in the model Hamiltonian (1)'.Moreover, since we treat the pairing interaction in the
thermal BCS approach the superfluid gap vanishes at T = 1 MeV. Thus, the pairing correlations

cannot play essential role in the temperature range where I, | is measured.

The first step in treating nuclear dynamics governed by the model Hamiltonian (1) at finite
temperatures is formal doubling of the Hilbert space of a nucleus. To this aim a fictitious (tilde-)
nucleus which is of exactly the same structure as the initial one is introduced. Thus, the tilde

creation and annihilation operators ¢,,c,, appear in the game. An excitation spectrum of a hot

many-body system is obtained by dlagonalization of the thermal Hamiltonian H = H - H. The
thermal behavior of the system is controlled by the thermal vacuum state, which is the

I',,, eigenstate of H with the zero eigenvalue.

Our starting point is the "mean field + RPA" scheme. To construct the Fock space of a hot
nucleus, we make a unitary thermal Bogoliubov transformation from our initial and tilde

' t0 thermal quasiparticle operators Bl im, P ,m,ﬂ m- Lhe transformation

:Bjm=\/1_n'cjm_ jm
~ + b
Bim=J1-1;Cp+[n;Cp

where 7, is a thermal Fermi occupation number

operatorsc’,

Jjm?> J'"’ J’"’

has the form

@)

n,= 1 :
7 l+exp [(Ej-4,)/T]

The chemical potentials A, , are adjusted to fulfill demands of the neutron and proton

number conservation in average. The transformation (2) saves the diagonal form of the single-
particle part of the thermal Hamiltonian, i.e.

HTSP =HSP —ﬁsp = Z(EJ _;"1) (ﬂ;’mﬂjm —lgjmﬁjm)‘

jmrt

The Hamiltonian H g, governs dynamics of the system of independent thermal quasiparticles. The

ground state of this system is the thermal vacuum state [0(T)) defined as follows:

Bl OT)) = B, 0T)) =

The interaction of thermal quasiparticles is given by the term

=——Z S (0 + 2O\ M;, @M, (p7) - BT, (07 G)

/tyrp +1

In terms of thermal quasiparticles the operator M, (r) reads

M;#(T)=_\/"— mz \llnn\l Jz[ﬂn ],1,,+\/_\/1 nfz['Bn ]/1#+
20+1 jip

! General formulae can be found in [19, 20, 26].
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+T=n, T=n, 1881, +[n, 1, 1B, B, ] 4)

The square brackets [ ],, stand for the coupling of single-particle angular momenta j, and j, to the

sum angular momentum A. The bar over lower index ; denotes the time reversal state. The value
f 7 1s a reduced single particle matrix element of the operator M u
The thermal RPA equations are obtained with the phonon operator of the following type:

Qo = 2B BT+ (DY 62 18,8 (5)

JiJa

under the assumption that the ground state of a hot nucleus is the thermal phonon vacuum state
|¥, (7)), ie. Q,,|¥(T))=0. Moreover, the phonon operators (5) are treated as bosonic ones,

which mean that the structure of the thermal phonon vacuum state does not deviate strongly from
that of the thermal quasiparticle vacuum state|0(7)).

The equation for thermal phonon energies o), is

X, @) + X, @) + 27)- 42247 (@)X () =1, ©6)
where

L Vi) oy n)E, -E,)
s ViR

X =
(0= E,-E,) -0

v
The amplitudes 7', and ¢}/,

f;nlz\ll I’l \/—— fh!le n \/—— (7)
J|jz \’2N/11

(E;-E,) -o, ’ "” N’“ (E; -E;) +a,

In Eq. (7), the value l/ W is a normalization factor of thermal phonon wave function. Note, that
values N, and N7 are different.

In contrast with RPA at T =0 the solutions of (6) with negative energies have physical
meanings. They correspond to tilde-phonon states QL I L 7 (T))

Coupling of thermal phonon

In terms of TRPA phonons and thermal quasiparticles the thermal Hamiltonian reads

H= Z F (sziQ,lpi + Q;:yiQ,l,ui ) - 8

Aui

Iy fi{(( 0" 0;,+0,., )BG s - -(1)* 8}, +8, , )BUijs A~y +he. )

/lw LIV

where

Brjy; A-p)= \/1"”1‘1 \/l_njz ['B};'Bﬁ Ly 1, ['leﬁ;_z Dy
The item of the thermal Hamiltonian (8) containing the operators B(j, j,;A ) and its tilde-

counterpart is responsible for the interaction of thermal quasiparticles with thermal phonons. It
mixes a one-phonon state with more complex configurations.
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To describe the fragmentation of thermal phonons we use the variational method with a trial
wave function of the form

(M) = { S RONG + TP QB Ly B ©)
i

Al
The secular TRPA equation for excited state energies is
Uz (Ji) UG (Ji")

1
det|(w, —1,,)0,;, ——= g - =) 10
e~ 2&%"2 @ T Ohi, — My St

Functions U 2:'2 (Ji) are coupling matrix elements between one- and two-phonon thermal

states. They are proportional to sums of different bilinear combinations of TRPA-phonon ampli-
tudes nfh and ¢ fl‘“ . The corresponding formulae can be found in [20, 26].

Within the outlined formalism the calculation procedure is the following: At a given value
of T we calculate the energies and structures of TRPA phonons (Eqs. (6) and (7); then all necessary
phonon coupling matrix elements U j;’? (Ji) are calculated. Then, to calculate the El strength

function b(E1,7) at T # 0 taking into account a fragmentation of thermal one-phonon dipole states,
we explore the well-known strength function method using the weight function of the Lorentz type
[22, 23].

Numerical results

We calculate the El-strength functions for 0< T< 3 MeV in ' Sn and **Pb nuclei. All
model parameters (mean field potentials, pairing constants, coupling constants of separable
interactions etc) are fixed in accordance with the usual QPM procedure [21, 23], i.e., by the use of
experimental data on the energies of low-lying vibrational states and giant resonances at T =0. As a
nuclear mean field the phenomenological Woods-Saxon potential is explored. The single-particle
basis consists of all bound states and several quasibound ones with relatively small escape widths.

Only multipole-multipole particle-hole interactions with 1< A < 7 are included in the Ha-
miltonian. A radial form factor of the separable multipole interaction has the formR(r) = dU/dr,
where U is the central part of the Woods-Saxon potential. The coupling constant of the isoscalar
dipole-dipole interaction is adjusted at every value of T to make the energy of the spurious 17-state
zero in the TRPA calculations. .

Let us note, that in the thermal RPA (see, [26]) we get qualitatively the same results as many
other authors (see, e.g., [27]). When temperature increases, only some minor redistribution of the
El strength between different one-phonon 17-states takes place. The energy centroids and Landau
widths of GDR in both the nuclei almost do not change with T.

The smearing parameter A in the Lorentz weight function is taken to be equal tol MeV. Asa

quantitative measure of the GDR spreading width we use a variance o, of the El-strength distri-
bution calculated with the following formula:

2
Ow = e (ﬁ] >
m, \m,
where m, (k=0, 1, 2) is the kth energy moment of the E1 strength function defined as follows:

Emax
my = " bELmdn .

E min

3EIPHUK HAYKOBMX IMPALb THCTHUTYTY SIIEPHMX JOCJIDKEHD Ne2 (15) 2005 41



AL VDOVIN, AN. STOROZHENKO

The calculated T-dependence of o, together with the values of ', in "Sn and **Pb
nuclei are displayed in Figs. 1 and 2, respectively.
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Fig. 1. Temperature dependence of the experimental
GDR width I’ and the varianced, of the

theoretical E1 strength function in'’Sn. Full
diamonds, the revised experimental data from [6];
full circle, the data from [11]; open diamond, the
data from [28].

Let us note that direct numerical comparison of o, with ",

Fig. 2. Temperature dependence of the experimental
GDR width ', and the dispersion o, of the

theoretical E1 strength function in **Pb. Full
diamonds, the revised experimental data fro [6], open
diamond, the data from [28].

, cannot be justified because

I' ., values are related to the so-called half-width of the experimental E1 strength function, which is
supposed to be of the Lorentz shape [28], but not to a variance. Moreover, the experimental data are
related to the total width whereas I'* is only a part of it. Thus, displaying of o, and I',  on the same

figures has only demonstrative sense.
The most distinctive feature of the theoretical curves is that they show increase in the vari-
ance and thus in the spreading GDR width with temperature. Moreover, o, ~ [, at T=0 and the

temperature dependences of o, and I'__ appears to be quite similar.

exp
Discussion

Our results on the behavior of I'™(T) qualitatively agree with that of [15] and [16, 17] but
are in contradiction with those of [12, 14]. To understand why in our approach the value o o9

increases with temperature, we analyze the matrix elements of a phonon-phonon coupling U jq":' (Ji)

and found a strong effect of a coupling of GDR phonons with few very low-lying thermal phonons
appearing in the phonon spectrum only at T # 0 due to the thermal occupation factors. These states
correspond to very low-lying poles E ,, —E, of the TRPA secular equation (6). One amplitude

771’:‘;2 dominates the phonon wave function, i.e. these phonons are noncollective and of the p-p or

h-h type.
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In total this conclusion agrees with the results of [15] although in that paper a special role of
these low-lying p-p (h-h) phonons was not definitely pointed out. It seems that in [12] the
noncollective thermal RPA excitations have been ignored (the same statement can be found in

[15D).

Some questions concerning a dependence of our numerical results on parameters still
remain. An appearance of low-lying p-p (h-h) states is dependent on the parameters of the mean
field. Probably, the use of a phenomenological Saxon-Woods potential gives the upper limit for the
role of these low-lying p-p (h-h) states because the density of single-particle states near the Fermi
level is the largest one in this potential. We guess that, e.g., with the mean field calculating by the
Hartree-Fock method with a density-dependent effective interaction like the Skyrme one, the

influence of these phonons on I * will be weaker.
One more ingredient directly affecting the calculated value of o is the size of the two-

phonon state space. To diminish the effect of the Pauli principle violation in these states and to
avoid the overcompleteness of the two-phonon basis, we include in the trial wave function (9) only
two-phonon configurations combining two collective or one collective — one noncollective phonons.
Since the low-lying collective states dissolve with increasing temperature there is no clear cut sepa-
ration between collective and noncollective states. At finite temperature the fragmentation of GDR
appears to be noticeably dependent on the definition of "phonon collectivity" (see, [26]). Never-
theless, a general trend of the thermal behavior of the spreading GDR width is saved.

There is one more interesting difference between our approach and that of [12, 14, 15]. The
difference has already been pointed out in [20] and now we would like to discuss it in more detail.
In [12, 15], the GDR width depends on thermal occupation numbers of two types — the Fermi -

Dirac and the Bose - Einstein occupation numbers. The appearance of Bose occupation factors is a
consequence of treating phonons as bosons when the temperature dependent Green's function of a
single phonon is introduced.

In the QPM-TFD approach to the phonon-phonon interaction at T # 0 on can not find the
thermal bosonic occupation numbers. The reason is evident: We start with the model Hamiltonian
written in terms of nucleonic (i.e. fermionic) variables. The thermal occupation numbers appear in
the game when we make the thermal Bogoliubov rotation (2) and thus produce the thermal Fock
space. All further manipulations explore these "heated" fermions and there is no room for the
appearance of bosonic occupation numbers. Our thermal Hamiltonian in its final form (8) is the
Hamiltonian of interacting phonons built from "heated" quasiparticles but the phonon system itself
is not heated in the sense that there is no thermal smearing of phonons over their energy levels.

This corresponds to a transparent phenomenological picture: when one heats a nucleus
putting there a good piece of energy, a nucleonic motion is changed and due to this the properties of
a nuclear surface are changed. However, this doesn’t mean that nuclear surface vibrations are
heated themselves.

In [15], the authors start just with the Hamiltonian of the interacting TRPA phonons
implying, as an obvious fact, that the phonon system has the same temperature T as the underlying
fermions forming the thermal phonons. In our opinion this is an additional assumption which has to
be justified. Similarly, in [14] from the beginning a nucleus is treated as a system of phonons and
quasiparticles. However, since phonons and quasiparticles are considered as some "initial"
ingredients, the structure of phonons has to be as it is in a cold nucleus and cannot be changed by
heating the system. Thus, they cannot satisfy the thermal RPA equation.

The point is that quasiparticles and phonons are not independent variables in a nucleus. The
phonon is a coherent superposition of two-quasiparticle components. So, starting with the model
Hamiltonian given in terms of nucleonic degrees of freedom one has to make a mapping of pure
fermionic states to a subspace consisting of ideal "quasiparticle" and "bosonic" elementary modes.

In this regard, Hatsuda [25] discussed already two ways to consider a hot nucleus in the
framework of TFD. The first is to make a mapping of the initial Hamiltonian and the initial pure
fermionic Fock space of a cold system (nucleus) and only after this to thermalize a system in
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question. For the approach presented here it means that degrees of freedom should be doubled for
the quasiparticle-phonon image of the Hamiltonian (1) at T=0. Then one gets the thermal
Hamiltonian with both the types of thermal occupation numbers and, consequently, the GDR width
also should depend on them. However, Hatsuda [25] has also shown taking the Lipkin model as an
example that "thermalizing" of the bosonic image of the initial fermionic Hamiltonian one cannot
derive in the leading order the TRPA equations for these bosons.

The second way is just our present way: while heating we treat a nucleus as a system of
fermions and only after this we project or transform the original nucleonic degrees of freedom to
more convenient ones (bosonic or bosonic + fermionic).

We would like to stress that the problem how to treat a thermalized nucleus in terms of
quasiparticles and phonons is not so trivial as it may seem at the first glance. It is in intimate corres-
pondence with a proper choice of physically important degrees of freedom and their consistent
mapping which has to comply with the particle statistic requirements [29].

Conclusions

A temperature dependence of the fragmentation of a giant dipole resonance has been studied
within the quasiparticle — phonon model extended to finite temperatures within the thermo field
dynamics. The increase of the variance of the theoretical E1 strength function with temperature in
the range 0 < T <3 MeV has been found.

Moreover, we draw attention to the problem of a proper selection of relevant nuclear degrees
of freedom to describe a mode-mode coupling in a hot nucleus. To our knowledge, this aspect of
nuclear theory was overlooked before.
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3AJIEJXKHICTh IIAPAHU TI'TAHTCHKOI'O JHUIIOJBHOI'O PE3OHAHCY
BIJf TEMIIEPATYPH

3ajieXHICTh CNpeaoBoi LIMPHHK T'Y riraHTCHKOro JHMONBHOrO pe30HaHCy BiJ TeMIepaTypH
JOCTIUKEHO B paMKaxX KBa3iuacTKOBO-()OHOHHOI MO SApa, y3aralbHEHOI Ha HEHY/IbOBI TEMIIEPaTypH 3a
JOTOMOTOI0 (hopMaTi3My TepMOIIONBOBOI AMHAMIKH. UMCENbHI PO3paXyHKH, BUKOHaHI /Ul KOMNayHA-S/ep
1206n Ta 2 Pb, ykasyloTh Ha WBHMAKHMI PiCT 3 TEMIIEPATYPHOI ITHPHHU rt , IO SKICHO Y3TOJKYETBCS 3
eKcriepuMeHTOM. OBTOBOPIOKOTECS MPUMMHH L(bOTO SBHINA, 4 TAKOX 3B’S30K 3alpPONOHOBAHOTO MiIXONY 3
{HITKMH TEOPIAMH.

3ABUCUMOCTH IIUPUHBI TMTAHTCKOI'O JHUIMOJBbHOI'O PE3OHAHCA
OT TEMIIEPATYPHI

A. H1. Bnosun, A. H. CtopoxkeHko

3aBUCHMOCTh CHPEJOBOH LIMPHHBI I'" rUraHTCKOrO IMNONBHOrO pe3oHaHca OT TeMIIepaTypel
HMCCIIEIOBAHA B PAMKAX KBa3sMYacTUYHO-(QOHOHHON MOJIeNH AApa, 0000LIEHHON HA HEHYJIEBbIE TEMIIEPaTy bl
¢ moMolIpio GopMaM3Ma TEPMOTIONEBOH NUHAMMKH. UMC/IEHHBIE pacyeTshl, BBINOIHEHHBIC /11 KOMOayH]-

5 o v
snep '2° Sn u 2 Pb, ykaspiBatoT Ha GBICTPEIN POCT ¢ TEMIEPATYPOH IMPHHBL '™, 4TO KaYECTBEHHO coracy-
eTcs ¢ sKcnepuMeHToM. OGCYXKIAIOTCS IPHUMHBI 3TOTO SIBJICHHS, @ TAKKEe CBA3b NMPEIOKEHHOr0 N0AX0/Aa ¢

JPYTEMH TEOPUAMH.
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