![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
New potential of the one-particle model of alpha-decay
V. V. Davydovskyy, A. K. Zaichenko, V. S. Olkhovsky
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Phenomenological one-particle model of alpha-decay, which is based on a mechanism of alpha-particle tunneling through Coulomb barrier, is proposed. In contrast to classical models of Gamow and Landau, calculations of the barrier penetrability are carried out with no use of quasiclassical approximation as well as the processes of formation and disappearance of alpha-particles in the surface layer of parent nucleus are taken into account. In the framework of this model, explicit relations for the Coulomb barrier penetrability, the phase tunneling and reflection time of alpha-particles as well as for the alpha-particle formation time are obtained. In addition, the program for development of time microscopic theory of alpha-decay of non-spherical nuclei, which is aimed not only to describe existing experimental data on alpha-decay of deformed nuclei, but also to plan new experiments, is given.
References:1. Пpеcтон M. Физика ядра (Mосква: Mиp, 1964).
2. Кадменский С. Г., Фурман В. И. Альфа-распад и родственные ядерные реакции (Mосква: Энергоатомиздат, 1985);
Кадменский С. Г. Ядерная физика 64 (2001) 478;
Ядерная физика 65 (2002) 1424.
3. Давыдов А. С. Теория атомного ядра (Mосква: Физматгиз, 1958).
4. Olkhovsky V. S., Recami E. Phys. Rep. 214 (1992) 339. https://doi.org/10.1016/0370-1573(92)90015-R
5. Privitera G., Salesi G., Olkhovsky V. S., Recami E. La Rivista del Nuovo Cimento 26 (2003) 1. https://doi.org/10.1007/BF03548918
6. Olkhovsky V. S., Recami E., Jakiel J. LANL Archives e-print # quant-ph/0102007, to appear in Phys. Rep., 2004.
7. Sobiczewski A. Phys. Part. Nucl. 25 (1994) 295.
8. Landau L. D. Phys. Zeits. Sow. 11 (1937) 556;
Ландау Л. Д., Смородинский Я. А. Лекции по теории атомного ядра (Mосква: ГИТТЛ, 1955).
9. Buck B., Merchant A. C., Perez S. M. Phys. Rev. Lett. 65 (1990) 2975. https://doi.org/10.1103/PhysRevLett.65.2975
10. Buck B., Merchant A. C., Perez S. M. Phys. Rev. C 45 (1992) 2247; https://doi.org/10.1103/PhysRevC.45.2247
Atomic Data and Nuclear Data Tables 54 (1993) 53. https://doi.org/10.1006/adnd.1993.1009
11. Ландау Л. Д., Лифшиц Е. М. Квантовая механика (Москва: Наука, 1974) Параграфы 46, 50.
12. Gurvitz S. A., Kalbermann G. Phys. Rev. Lett. 59 (1987) 262. https://doi.org/10.1103/PhysRevLett.59.262
13. Гопыч П. М., Залюбовский И. И. ЭЧАЯ 19 (1988) 785;
Gopych P. M., Zalyubovskit I. I. Sov. J. Part. Nucl. 19 (1988) 338.
14. Serot O., Carjan N., Strottman D. Nucl. Phys. A 569 (1994) 562. https://doi.org/10.1016/0375-9474(94)90319-0
15. Winslow G. H. Phys. Rev. 96 (1954) 1032. https://doi.org/10.1103/PhysRev.96.1032
16. Brink D. Nucl. Phys. A 216 (1973) 109. https://doi.org/10.1016/0375-9474(73)90521-6
17. Rawisscher C. H. Phys. Rev. Lett. 14 (1964) 150.
18. Papenbrock T., Bertsch G. F. Phys. Rev. Lett. 80 (1998) 4141. https://doi.org/10.1103/PhysRevLett.80.4141
19. Tkalya E. V. Phys. Rev. C 60 (1999) 054612. https://doi.org/10.1103/PhysRevC.60.054612
20. Rasmussen J. O. Phys. Rev. 113 (1959) 1593. https://doi.org/10.1103/PhysRev.113.1593
21. Мотт Н., Месси Г. Теория атомных столкновений (Москва: Мир, 1969).
22. Градштейн И. С., Рыжик И. М. Таблицы интегралов, рядов, сумм и произведений (Москва: ФМ, 1962).