Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2005, volume 6, issue 1, pages 7-20.
Section: Nuclear Physics.
Received: 14.01.2005; Published online: 30.03.2005.
PDF Full text (en)
https://doi.org/10.15407/jnpae2005.01.007

Shells, orbits and transport coefficients of the nuclear collective dynamics

A. G. Magner1,2, A. N. Gzhebinsky1, S. N. Fedotkin1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Technical Munich University, Garching, Germany

Abstract: The Strutinsky shell correction method is applied to the nuclear collective dynamics within the periodic orbit theory extended to dissipative phenomena through some effective residue interactions. The macroscopic limit of the semiclassical transport coefficients with the known wall formula for the friction is obtained. The shell corrections to the stiffness, the inertia and the friction parameters are calculated analytically as functions of the particle number and temperature for the low-energy excitations of heavy nuclei. It is shown that they are approximately proportional to the free-energy shell corrections, with the same sign for the inertia and the opposite one for the stiffness and the friction. The shell oscillating components of the transport coefficients disappear exponentially at temperatures larger than the ones of the free energy. The reduced friction and the energy excitation estimations are in agreement with some experimental data and theoretical calculations.

References:

1. Migdal A. B. Theory of Finite Fermi Systems and Applications to Atomic Nuclei (New York: Wiley, 1967).

2. Strutinsky V. M. Nucl. Phys. A 95 (1967) 420; https://doi.org/10.1016/0375-9474(67)90510-6

Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4

3. Brack M., Damgard J., Jensen A. S., Pauli H. C., Strutinsky V. M., Wong C. Y. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320

4. Strutinsky V. M., Magner A. G., Brack M. Z. Phys. A 316 (1984) 217. https://doi.org/10.1007/BF01412266

5. Magner A. G., Strutinsky V. M. Z. Phys. A 322 (1985) 633; https://doi.org/10.1007/BF01415145

Sov. J. Nucl. Phys. 44 (1986) 591.

6. Strutinsky V. M., Magner A. G., Denisov V. Yu. Z. Phys. A 315 (1984) 301; https://doi.org/10.1007/BF01438454

Sov. J. Nucl. Phys. 39 (1984) 1382.

7. Strutinsky V. M., Magner A. G., Denisov V. Yu. Z. Phys. A 322 (1985) 149. https://doi.org/10.1007/BF01412028

8. Bohr A., Mottelson B. Nuclear Structure (New York, 1975) Vol. 2.

9. Hofmann H. Phys. Rep. 284 (1997) 137. https://doi.org/10.1016/S0370-1573(97)00006-9

10. Magner A. G., Kolomietz V. M., Hofmann H., Shlomo S. Phys. Rev. C 51 (1995) 2457. https://doi.org/10.1103/PhysRevC.51.2457

11. Gutzwiller M. J. Math. Phys. 12 (1971) 343; https://doi.org/10.1063/1.1665596

Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag, 1990).

12. Balian R. B., Bloch C. Ann. Phys. 69 (1972) 76. https://doi.org/10.1016/0003-4916(72)90006-1

13. Strutinsky V. M. Nukleonika 20 (1975) 679;

Strutinsky V. M., Magner A. G. Sov. Phys. Part. Nucl. 7 (1976) 138.

14. Brack M., Bhaduri R. K. Semiclassical Physics. Frontiers in Physics (Addison-Wesley, Reading. 1997) Vol. 96.

15. Magner A. G., Vydrug-Vlasenko S. M., Hofmann H. Nucl. Phys. A 524 (1991) 31. https://doi.org/10.1016/0375-9474(91)90015-X

16. Yamaji S., Hofmann H., Samhammer S. Nucl. Phys. A 475 (1988) 487. https://doi.org/10.1016/0375-9474(87)90075-3

17. Hofmann H., Ivanyuk F. A., Yamaji J. Nucl. Phys. A 598 (1996) 187. https://doi.org/10.1016/0375-9474(95)00442-4

18. Yamaji S., Ivanyuk F. A., Hofmann H. Nucl. Phys. A 612 (1997) 1. https://doi.org/10.1016/S0375-9474(96)00275-8

19. Ivanyuk F. A., Hofmann H., Pashkevich V. V., Yamaji J. Phys. Rev. C 55 (1997) 1730. https://doi.org/10.1103/PhysRevC.55.1730

20. Hofmann H., Ivanyuk F. A., Magner A. G. Acta Phys. Pol. B 29 (1998) 375.

21. Gontchar I. I., Fröbrich P. Phys. Atom. Nucl. 57 (1994) 1181;

Hilsher D., Gontchar I. I., Rossner H. Phys. Atom. Nucl. 57 (1994) 1187.

22. Hatch R. L., Koonin S. E., Randrup J. Nucl. Phys. A 283 (1977) 87. https://doi.org/10.1016/0375-9474(77)90701-1

23. Kolomietz V. M. Phys. Atom. Nucl. (Yadernaya Fizika) 28 (1979) 367.

24. Fedoryuk M. V. Sov. J. of Comp. Math. and Math. Phys. 4 (1964) 671.

Sov. J. of Comp. Math. and Math. Phys. 10 (1970) 286.

25. Koonin S. E., Randrup J. Nucl. Phys. A 289 (1977) 475. https://doi.org/10.1016/0375-9474(77)90047-1

26. Kolomietz V. M., Kondratyev V. N. Z. Phys. A 344 (1992) 125. https://doi.org/10.1007/BF01291695