Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2004, volume 5, issue 2, pages 163-172.
Section: Engineering and Methods of Experiment.
Received: 19.04.2004; Published online: 30.12.2004.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2004.02.163

CdWO4 scintillation detector optimization for the 2β experiment with 116Cd

². ². Veretyannikov1,2, F. À. Danevich1, Yu. G. Zdesenko1, V. V. Êîbychev1, S. S. Nagorny1, D. V. Poda1,3

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine
3Kyiv Taras Shevchenko National University, Kyiv, Ukraine

Abstract: Improvement of the energy resolution of 116CdWO4 scintillation spectrometer from 8% to 4% (FWHM, at the energy of 116Cd 2β-decay - 2.8 ÌåV) can reduce background by a factor of 3 - 4. It allows to improve sensitivity of the new experiment, which is developed in the Solotvina Underground Laboratory, up to the level of T1/2 ≈ 1025 years for 0ν2β-decay of 116Cd, which corresponds to the neutrino mass mν ≈ 0.2 eV. With the CdWO4 crystal (⊘ 40 × 30 mm) located in a light-guide, 22% increase of light collection was obtained. Such an improvement of light collection for a scintillation detector with light-guide is reached for the first time. The energy resolution of 3.7% (at energy 2.8 ÌåV) can be obtained using two light-guides and off-line correction of light collection non-uniformity.

References:

1. Fukuda Y., Hayakawa T., Ichihara E. et al. Super-Kamiokande Collaboration. Phys. Rev. Lett. 81 (1998) 1562; https://doi.org/10.1103/PhysRevLett.81.1562

Phys. Rev. Lett. 82 (1999) 1810; https://doi.org/10.1103/PhysRevLett.82.1810

Fukuda S., Fukuda Y., Ishitsuka M. et al. Super-Kamiokande Collaboration. Phys. Rev. Lett. 85 (2000) 3999. https://doi.org/10.1103/PhysRevLett.85.3999

2. Mann W. A. Soudan 2 Collaboration. Nucl. Phys. B (Proc. Suppl.) 91 (2001) 134. https://doi.org/10.1016/S0920-5632(00)00933-6

3. Ambrosio M., Antolini R., Auriemma G. et al. MACRO Collaboration. Phys. Lett. B 517 (2001) 59. https://doi.org/10.1016/S0370-2693(01)00992-3

4. Lande K., Wildenhain P. Nucl. Phys. B (Proc. Suppl.) 118 (2003) 49. https://doi.org/10.1016/S0920-5632(03)01303-3

5. Abdurashitov J. N., Gavrin V. N., Girin S. V. et al. SAGE Collaboration. Phys. Rev. C 60 (1999) 055801; https://doi.org/10.1103/PhysRevC.60.055801

Vermul V. M. Nucl. Phys. B (Proc. Suppl.) 110 (2002) 315. https://doi.org/10.1016/S0920-5632(02)01496-2

6. Ahmad Q. R., Allen R. C., Andersen C. T. et al. SNO Collaboration. Phys. Rev. Lett. 89 (2002) 011302; nucl-ex/0204009. https://doi.org/10.1103/PhysRevLett.89.011302

7. Eguchi K., Enomoto S., Furuno K. et al. KamLAND Collaboration. Phys. Rev. Lett. 90 (2003) 021802; hep-ex/0212021. https://doi.org/10.1103/PhysRevLett.90.021802

8. Ahn M. H., Aoki S., Bhang H. et al. K2K Collaboration. Phys. Rev. Lett. 90 (2003) 041801; hep-ex/0212007. https://doi.org/10.1103/PhysRevLett.90.041801

9. Moe M., Vogel P. Annu. Rev. Nucl. Part. Sci. 44 (1994) 247. https://doi.org/10.1146/annurev.ns.44.120194.001335

10. Vergados J. D. Phys. Rep. 361 (2002) 1. https://doi.org/10.1016/S0370-1573(01)00068-0

11. Zdesenko Yu. Rev. Mod. Phys. 74 (2002) 663. https://doi.org/10.1103/RevModPhys.74.663

12. Klapdor-Kleingrothaus H. V., Dietz A., Harley H. L., Krivosheina I. V. Mod. Phys. Lett. A 16 (2001) 2409. https://doi.org/10.1142/S0217732301005825

13. Aalseth C. E., Avignone F. T. III, Barabash A. et al. Mod. Phys. Lett. A 17 (2002) 1475; hep-ex/0202026. https://doi.org/10.1142/S0217732302007715

14. Zdesenko Yu. G., Danevich F. A., Tretyak V. I. Phys. Lett. B 546 (2002) 206. https://doi.org/10.1016/S0370-2693(02)02705-3

15. Feruglio F., Strumia A., Vissani F. Nucl. Phys. B 637 (2002) 345; https://doi.org/10.1016/S0550-3213(02)00345-0

Nucl. Phys. B 659 (2003) 359; hep-ph/0201291. https://doi.org/10.1016/S0550-3213(03)00228-1

16. Klapdor-Kleingrothaus H. V., Krivosheina I. V., Dietz A., Chkvorets O. Phys. Lett. B 586 (2004) 198. https://doi.org/10.1016/j.physletb.2004.02.025

17. Tretyak V. I., Zdesenko Yu. G. At. Data Nucl. Data Tables 61 (1995) 43; https://doi.org/10.1016/S0092-640X(95)90011-X

At. Data Nucl. Data Tables 80 (2002) 83. https://doi.org/10.1006/adnd.2001.0873

18. Zdesenko Yu. G., Kropivyansky B. N., Kuts V. N., Nikolaiko A. S. Proc. 2nd Int. Symp. Uderground Physics. Baksan Valley 1987 (Moscow: Nauka, 1988) p. 291.

19. Danevich F. A., Georgadze A. Sh., Kobychev V. V., Tretyak V. I. et al. Phys. Rev. C 62 (2000) 045501. https://doi.org/10.1103/PhysRevC.62.045501

20. Bizetti P. G., Danevich F. A., Fazzini T. F. et al. Nucl. Phys. B (Proc. Suppl.) 110 (2002) 389. https://doi.org/10.1016/S0920-5632(02)01518-9

21. Danevich F. A., Georgadze A. Sh., Kobychev V. V. et al. Phys. Rev. C 67 (2003) 014310. https://doi.org/10.1103/PhysRevC.67.014310

22. Catalog THORN EMI Electron Tubes Ltd. (1993).

23. Dorenbos P., De Haas J. T. M., Van Eijk C. W. E. IEEE Trans. Nucl. Sci. 42 (1995) 2190. https://doi.org/10.1109/23.489415

24. Van Eijk C. W. E. Nucl. Instr. Meth. A 471 (2001) 244. https://doi.org/10.1016/S0168-9002(01)00983-4

25. Moszynski M. Nucl. Instr. Meth. A 505 (2003) 101. https://doi.org/10.1016/S0168-9002(03)01030-1

26. Holl I., Lorenz E., Mageras G. IEEE Trans. Nucl. Sci. 35 (1988) 105. https://doi.org/10.1109/23.12684

27. Kinloch D. R., Novak W., Rady P., Toepke I. IEEE Trans. Nucl. Sci. 41 (1994) 752. https://doi.org/10.1109/23.322800

28. Catalog Crismatec, Saint-Gobain, Ceramiques Industrielles (1992).

29. Tove F. A. Rev. Sci. Instr. 27 (1956) 143. https://doi.org/10.1063/1.1715497

30. Fazzini T., Bizzeti P. G., Maurenzig P. R. et al. Nucl. Instr. Meth. A 410 (1998) 213. https://doi.org/10.1016/S0168-9002(98)00179-X

31. Birks J. B. Theory and Practice of Scintillation Counting (Pergamon, London, 1964). https://doi.org/10.1016/C2013-0-01791-4

32. Agostinelli S., Allison J., Amako K. et al. GEANT4 Collaboration. Nucl. Instr. Meth. A 506 (2003) 250. https://doi.org/10.1016/S0168-9002(03)01368-8

http://geant4.web.cern.ch/geant4/