|
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
| Home page | About |
CdWO4 scintillation detector optimization for the 2β experiment with 116Cd
І. І. Veretyannikov1,2, F. А. Danevich1, Yu. G. Zdesenko1, V. V. Коbychev1, S. S. Nagorny1, D. V. Poda1,3
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine
3Kyiv Taras Shevchenko National University, Kyiv, Ukraine
Abstract: Improvement of the energy resolution of 116CdWO4 scintillation spectrometer from 8% to 4% (FWHM, at the energy of 116Cd 2β-decay - 2.8 МеV) can reduce background by a factor of 3 - 4. It allows to improve sensitivity of the new experiment, which is developed in the Solotvina Underground Laboratory, up to the level of T1/2 ≈ 1025 years for 0ν2β-decay of 116Cd, which corresponds to the neutrino mass mν ≈ 0.2 eV. With the CdWO4 crystal (⊘ 40 × 30 mm) located in a light-guide, 22% increase of light collection was obtained. Such an improvement of light collection for a scintillation detector with light-guide is reached for the first time. The energy resolution of 3.7% (at energy 2.8 МеV) can be obtained using two light-guides and off-line correction of light collection non-uniformity.
References:1. Fukuda Y., Hayakawa T., Ichihara E. et al. Super-Kamiokande Collaboration. Phys. Rev. Lett. 81 (1998) 1562; https://doi.org/10.1103/PhysRevLett.81.1562
Phys. Rev. Lett. 82 (1999) 1810; https://doi.org/10.1103/PhysRevLett.82.1810
Fukuda S., Fukuda Y., Ishitsuka M. et al. Super-Kamiokande Collaboration. Phys. Rev. Lett. 85 (2000) 3999. https://doi.org/10.1103/PhysRevLett.85.3999
2. Mann W. A. Soudan 2 Collaboration. Nucl. Phys. B (Proc. Suppl.) 91 (2001) 134. https://doi.org/10.1016/S0920-5632(00)00933-6
3. Ambrosio M., Antolini R., Auriemma G. et al. MACRO Collaboration. Phys. Lett. B 517 (2001) 59. https://doi.org/10.1016/S0370-2693(01)00992-3
4. Lande K., Wildenhain P. Nucl. Phys. B (Proc. Suppl.) 118 (2003) 49. https://doi.org/10.1016/S0920-5632(03)01303-3
5. Abdurashitov J. N., Gavrin V. N., Girin S. V. et al. SAGE Collaboration. Phys. Rev. C 60 (1999) 055801; https://doi.org/10.1103/PhysRevC.60.055801
Vermul V. M. Nucl. Phys. B (Proc. Suppl.) 110 (2002) 315. https://doi.org/10.1016/S0920-5632(02)01496-2
6. Ahmad Q. R., Allen R. C., Andersen C. T. et al. SNO Collaboration. Phys. Rev. Lett. 89 (2002) 011302; nucl-ex/0204009. https://doi.org/10.1103/PhysRevLett.89.011302
7. Eguchi K., Enomoto S., Furuno K. et al. KamLAND Collaboration. Phys. Rev. Lett. 90 (2003) 021802; hep-ex/0212021. https://doi.org/10.1103/PhysRevLett.90.021802
8. Ahn M. H., Aoki S., Bhang H. et al. K2K Collaboration. Phys. Rev. Lett. 90 (2003) 041801; hep-ex/0212007. https://doi.org/10.1103/PhysRevLett.90.041801
9. Moe M., Vogel P. Annu. Rev. Nucl. Part. Sci. 44 (1994) 247. https://doi.org/10.1146/annurev.ns.44.120194.001335
10. Vergados J. D. Phys. Rep. 361 (2002) 1. https://doi.org/10.1016/S0370-1573(01)00068-0
11. Zdesenko Yu. Rev. Mod. Phys. 74 (2002) 663. https://doi.org/10.1103/RevModPhys.74.663
12. Klapdor-Kleingrothaus H. V., Dietz A., Harley H. L., Krivosheina I. V. Mod. Phys. Lett. A 16 (2001) 2409. https://doi.org/10.1142/S0217732301005825
13. Aalseth C. E., Avignone F. T. III, Barabash A. et al. Mod. Phys. Lett. A 17 (2002) 1475; hep-ex/0202026. https://doi.org/10.1142/S0217732302007715
14. Zdesenko Yu. G., Danevich F. A., Tretyak V. I. Phys. Lett. B 546 (2002) 206. https://doi.org/10.1016/S0370-2693(02)02705-3
15. Feruglio F., Strumia A., Vissani F. Nucl. Phys. B 637 (2002) 345; https://doi.org/10.1016/S0550-3213(02)00345-0
Nucl. Phys. B 659 (2003) 359; hep-ph/0201291. https://doi.org/10.1016/S0550-3213(03)00228-1
16. Klapdor-Kleingrothaus H. V., Krivosheina I. V., Dietz A., Chkvorets O. Phys. Lett. B 586 (2004) 198. https://doi.org/10.1016/j.physletb.2004.02.025
17. Tretyak V. I., Zdesenko Yu. G. At. Data Nucl. Data Tables 61 (1995) 43; https://doi.org/10.1016/S0092-640X(95)90011-X
At. Data Nucl. Data Tables 80 (2002) 83. https://doi.org/10.1006/adnd.2001.0873
18. Zdesenko Yu. G., Kropivyansky B. N., Kuts V. N., Nikolaiko A. S. Proc. 2nd Int. Symp. Uderground Physics. Baksan Valley 1987 (Moscow: Nauka, 1988) p. 291.
19. Danevich F. A., Georgadze A. Sh., Kobychev V. V., Tretyak V. I. et al. Phys. Rev. C 62 (2000) 045501. https://doi.org/10.1103/PhysRevC.62.045501
20. Bizetti P. G., Danevich F. A., Fazzini T. F. et al. Nucl. Phys. B (Proc. Suppl.) 110 (2002) 389. https://doi.org/10.1016/S0920-5632(02)01518-9
21. Danevich F. A., Georgadze A. Sh., Kobychev V. V. et al. Phys. Rev. C 67 (2003) 014310. https://doi.org/10.1103/PhysRevC.67.014310
22. Catalog THORN EMI Electron Tubes Ltd. (1993).
23. Dorenbos P., De Haas J. T. M., Van Eijk C. W. E. IEEE Trans. Nucl. Sci. 42 (1995) 2190. https://doi.org/10.1109/23.489415
24. Van Eijk C. W. E. Nucl. Instr. Meth. A 471 (2001) 244. https://doi.org/10.1016/S0168-9002(01)00983-4
25. Moszynski M. Nucl. Instr. Meth. A 505 (2003) 101. https://doi.org/10.1016/S0168-9002(03)01030-1
26. Holl I., Lorenz E., Mageras G. IEEE Trans. Nucl. Sci. 35 (1988) 105. https://doi.org/10.1109/23.12684
27. Kinloch D. R., Novak W., Rady P., Toepke I. IEEE Trans. Nucl. Sci. 41 (1994) 752. https://doi.org/10.1109/23.322800
28. Catalog Crismatec, Saint-Gobain, Ceramiques Industrielles (1992).
29. Tove F. A. Rev. Sci. Instr. 27 (1956) 143. https://doi.org/10.1063/1.1715497
30. Fazzini T., Bizzeti P. G., Maurenzig P. R. et al. Nucl. Instr. Meth. A 410 (1998) 213. https://doi.org/10.1016/S0168-9002(98)00179-X
31. Birks J. B. Theory and Practice of Scintillation Counting (Pergamon, London, 1964). https://doi.org/10.1016/C2013-0-01791-4
32. Agostinelli S., Allison J., Amako K. et al. GEANT4 Collaboration. Nucl. Instr. Meth. A 506 (2003) 250. https://doi.org/10.1016/S0168-9002(03)01368-8