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SELF SIMILAR ASYMPTOTICS OF THE DRIFT ION ACOUSTIC WAVES
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A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar
solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is
determined in the presence of the magnetic shear as well as in the shearless case. Some of the most
symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal
flow interaction with monochromatic waves are presented and corresponding frequency shifts are
determined.

Introduction

Low frequency drift and ion acoustic waves play an important role in the transport processes
in magnetized plasmas [1]. The main problem in their treatment is the presence of nonlinear effects
even at relative small amplitudes. Up to now, many results were obtained by traditional methods -
non-symmetric perturbation theory, wave-kinetic equations technique supported by numerical
simulations (see the review article [1] and citations therein), but many questions remain open.
Namely, only in the particular case of pure ion-acoustic waves dispersion and nonlinear terms can
balance to form Korteweg-de Vries solitons. In the two-dimensional case of pure drift waves
(Hasegawa-Mima model) anisotropic dispersion fails to balance degenerated vortex nonlinearity
terms, so Larichev-Reznik type vortex structures (modons) does not have soliton stability
properties. Furthermore, dynamical chaos and fractional kinetics are also important in the evolution
of the drift ion acoustic waves [2, 3].

In this situation, symmetry considerations can help us to better understand the properties of
the coupled drift ion acoustic waves. We can expect to find some exact invariant solutions or to
determine the form of the functions describing these solutions. We can also build symmetric
perturbation theory (see, e.g. [4 - 7]).

In the previous work [8, 9], a spatially three-dimensional model (see, e.g. [10]) was
considered for the coupled drift and ion acoustic waves. Symmetry analysis for this model was
performed. The influence of the magnetic shear on the symmetry properties was studied. The form
was determined of the most symmetric localized and spatially periodic waves. For the waves of
small but finite amplitude perturbation theory based on the multiple-time-scale formalism was built.
Some precise and perturbative solutions describing higher harmonics generation, frequency shifts
and zonal flow generation by initially monochromatic waves were obtained.

In the present work the asymptotic solutions of this model are considered. The model is
shortly described in the first section. In the second section symmetries and self-similar asymptotic
solutions are presented. In the last section conclusions are drawn.

Model

Let us consider an inhomogeneous plasma slab with the background plasma density n, ~
exp(x / Ly) in the external magnetic field B = B, (e; + ey (x / Lgy)) with the shear length Lgy.
Electrons, unlike ions, are magnetized, smoothing an electrostatic potential @ along the magnetic
field lines. In this case, 3D generalization [10] of the Hasegawa-Mima model equations holds:

O/t + J[ ®, W ]+ v/dz + S x BvIdy = oD/dy,
Bv/ot + J[®, v] + 60/0z + S x 8D/By = 0, (1)
Y=-A, D,
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where v is the ion velocity along the main magnetic field direction e,, ¥ = ¥, is the only non-zero
component of the generalized vorticity, S = Lg, / Ly. the operators in (1) are equal to

J[F, G ] = 0F/0x 0G/dy - OF/dy 6G/ox, Ay ® = 8*D/ox> + °D/oy".
The system (1) is written in dimensionless variables
EMit, X/, y/rp, €2/tg, eD/TeE, vi,/cs,

where the ion cyclotron frequency . = eBy/Mc and ion sound speed ¢, = (T¢/M)"? determine the
characteristic dispersion length rg = ¢/ @i and the small parameter ¢ is equal to the ratio rg / Ly,.

Hydrodynamic ion component velocity (transverse to the main external magnetic field) is
determined by the expressions

Vix = = 6®/ay, Viy = O0D/0X.
The transverse electric field components are
Ex=-00®/0x, E,=-0d/oy.

Pure ion acoustic (potential) nonlinearity is not present in the model (1) as well as other
higher order effect in the parameter .

Symmetries and self-similar solutions

The presence of the parameter r in the model (1) leads to the symmetry reduction and, as a
consequence, to the absence of self-similar solutions. Nevertheless, self-similar solutions can exist
as asymptotic ones. To prove this, let us first neglect the magnetic shear terms (i.e. let us put S = 0)
and the term A, @ in the system (1). In this way we obtain more symmetric equations, which admit
the following similarity transforms:

X, =x 0/6x + v 8/ov + D 8/0D + ¥ 50V, )
Xy =y /0y +z 0/0z + t dlé. 3)

It can be readily seen that only the second transformation, X, remains in the presence of
magnetic shear ( S # 0 ). Moreover, in this case non-trivial self-similar solutions can exist only if
Laplacian operator is reduced to A, ® = o*®/0x>. In other words, an additional condition

F*D/oy* =0 4)

must be imposed on the solutions of (1). Then, symmetry X, determines the form of the
corresponding self-similar solutions:

@ = F(x, z/t) (y/t) + G(x, z/t), v=U(x, y/, z/t). (5)

The RHS functions F(x, z/t), G(x, z/t) and U(x, y/t, z/t) must be found from the system (1).
The form of the vorticity function W is determined by the last equation of the system (1):

¥ = (F - F/ox?) (yit) + (G - °G/ox>).

In the shearless case, S = 0 the self-similar solutions of the form (5) still exist and are
determined by the system (1) with S = 0.

Other self-similar solutions are possible in the absence of magnetic shear, S = 0, since the
additional symmetry X, allows us to try solutions in the form:

Q=xF(tyz, Y=xG(y 2, v=xUy,2). (6)
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Based on these solutions the Laplacian operator is automatically reduced to A, @ = /oy’
Inserting @, ¥ and v in the form determined by (6) in the system (1) and setting S = 0, we readily
obtain:

6G/ot + F 8G/dy - (G + 1) F/dy + 8Uldz =0,
dU/ét + F 8U/dy - U oF/dy + 0Foz = 0, (7)
G =F - &Floy’.

For the pure ion acoustic waves (6/dy = 0), the system (7) is reduced to the linear ion
acoustic wave equations for F and its conjugate U:

oF/ot +0U/ez =0, oU/ot+ oFoz=0, G=F. (8)
For the pure drift waves (Hasegawa-Mima model, 60z = 0, U = 0) the system (7) becomes

8G/ot + F 6G/oy - (G + 1) 8F/dy = 0,
9
G=F - &Floy

and can be transformed to the form
o(1/(G+1))/ot + o(F/(G+1))/oy=0, G=F - 62F/8y2. - (10)

The system (10) is still nonlinear, but we can use its symmetries to find some exact
solutions. Namely, due to continuous symmetries

X3 =08/0t, X4=0/0y (11)

and to the discrete ones, t — -t, y — -y, we can find exact invariant solutions describing:

a) homogeneous zonal flow, F = G = const;

b) monochromatic wave: F = A cos( @ t + q y ), amplitude A is an arbitrary constant and
the frequency is determined by the dispersion relation of the linear theory

0=q/(1+q); (12)
¢) interaction of the zonal flow with the monochromatic wave
F=a(1+Bcos((®w+dw)t+qy)), (13)

where  is arbitrary constant amplitude, constant factor § determines the relative weight of the zonal
flow and the monochromatic wave, the frequency is © = q /( 1 + q°) and the frequency shift is

So=-0aq/(1+q) (14)

If the amplitude a is equal to 1/ q’, the frequency is shifted to zero and we obtain time
independent solution

F=(1+Bcos(qy)q. (15)

In the general case of the coupled drift and ion acoustic waves, 60z # 0, U # 0, self-similar
solutions of the form (6) can be obtained as perturbation theory solutions of (7). They can be readily -
found in the limit k;x — 0 from the more general solutions obtained in the previous work [8, 9].
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Conclusions

It is shown that in asymptotic regimes the symmetry of the system (1) is extended, namely .
the scaling transformations (2) and (3) appear. The physical reason for this symmetry extension is
that nonlinear waves have a simpler shape near their critical points — nodes, crests etc. Due to the
symmetry extension, self-similar solutions of the form (5) and (6) become possible.

Self-similar solutions (5) describe the nonlinear drift ion acoustic wave in the vicinity of the
maximum electric field component Ey in the drift direction. These solutions are possible in the
presence of the magnetic shear as well as in the shearless case.

Self-similar solutions (6) describe the non-linear drift ion acoustic wave in the vicinity of its
nodal points. Such solutions are possible only in the shearless case, S = 0. In general, these
solutions can be obtained by perturbative treatment of the system (7). First two orders of amplitude
self-similar solutions coincide with the k;x — 0 limit of the previous more general results [8, 9]. In
the particular case of pure drift waves self-similar analytical solution describing the interaction of
the zonal flow with the monochromatic wave is obtained (see (12) — (14))

O=ax(1+pcos((w+dw)t+qy)), (16)

where the frequency o is determined by the dispersion relation of the linear theory (12) and the
frequency shift to the frequency ratio is

0/ 0)=-0aq. (17)

When the amplitude  reaches the value 1/ q°, wave frequency is shifted to zero.

The solutions obtained in this work can be useful for plasma diagnostics and for testing
numerical codes modeling the drift ion acoustic waves. Investigations of their stability can be
helptul in the study of the dynamical chaos which is present in the model considered above.
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ABTOMO/JIEJIbHI ACUMIITOTUKHU JPEH®OBO-IOHHOAKYCTUYHUX XBWJIb
B. b. Tapanos

Posrasnaersca TpuBUMIpHA MOJENb AN MOB’A3aHUX MK cO00I ApeiihoBUX TAa {OHHOAKYCTHYHMX
xBu/ib. [lokazano, WO 3aBAAKM MOLIMPEHHIO CHUMETPIl B ACHMNTOTHYHUX pEXUMAX MOXYTh ICHYBATH
aBTOMO/ENbHI pilleHHs. BusHaueHo dopmy Takux pilieHb SK y NPUCYTHOCTI MarHiTHOTO ILMPY, TaK i B
Oeswmnposomy Bumnaaky. Jleski 3 Haibinbll CUMETPUYHUX TOYHMX Pilll€Hb OJEPKAHO B SBHOMY BHIJIAI.
30kpema, oflepKaHO pillleHHs, 1O MPEeICTABIAIOTH B3aEMO/IK0 30HAIIBHUX MOTOKIB i3 MOHOXPOMAaTHYHUMU
XBWJIIMH, | BU3HAYCHO BI/TMOBI/IHI 3CYBH YaCTOTH.
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ABTOMO/IEJIbHBIE ACUMIITOTUKHU JIPEH®OBO-HOHHOAKYCTUYECKHX BOJIH

B. b. Tapanos

PaccMoTpeHa TpexmepHas Moneldb A8 CBA3aHHBIX APeH(OBbIX M HOHHOAKYCTHYECKHMX BOJIH.
[TokazaHo, 4yto Garofaps paclUMPeHUI0 CUMMETPUM B aCHUMNTOTHYECKHMX PEXHMax MOTYT CyLIECTBOBaTh
aBToMo/e/bHble pelueHus. Onpenenesa opMa TakKMX PellEHMH KaK B MPUCYTCTBHM MArHUTHOTO LIMPA, TaK
¥ B OecluMpoBoM ciydae. Hekotopble u3 Haubonee CHMMETPHYHBIX TOYHBIX PElUEHHH HaWIeHbl B SBHOM
BUAe. B uwacTHOCTM, MOJyuYeHbl pELIEHHs, ONMCHIBAIOILME B3aUMOJEHCTBHE 30HAJIBHBIX TOTOKOB C
MOHOXPOMATHUYECKUMH BOJTHAMM, H OTPE/eNeHbl COOTBETCTBYHOLUME C/IBUIH YaCTOTBI.
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