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DRIFT ION ACOUSTIC WAVES AND THEIR SYMMETRIES
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3D model for the coupled drift and ion acoustic waves is considered. Symmetries of the model are
found in the presence of the magnetic shear as well as in the shearless case. Some of the most symmetric
solutions, exact and perturbative, are presented. In particular, solutions describing zonal flow generation by
initially monochromatic waves are obtained.

Introduction

Low frequency drift and ion acoustic waves play an important role in the transport processes
in magnetized plasmas [1]. The main problem in their treatment is the presence of nonlinear effects
even at relative small amplitudes. In this situation the symmetry analysis can help us to find exact or

perturbative solutions (see, e.g. [2]).
Only in the particular case of pure ion acoustic waves (the well-known Korteweg-de Vries

equation in one dimension) dispersion and nonlinear steepening can balance to form coherent
structures called solitons. In the two-dimensional case of pure drift waves (Hasegawa-Mima model)
anisotropic dispersion fails to balance degenerated vortex nonlinearity terms [2, 3].

In the present work more general spatially three-dimensional model [4] is considered for the
coupled drift and ion acoustic waves. Symmetry analysis for this model is performed. Magnetic
shear influence on the symmetry properties is studied. The form is determined of the most
symmetric localized and spatially periodic waves. For the waves of small but finite amplitude the
perturbation theory based on multiple-time-scale formalism is built. Some exact and perturbative
solutions describing higher harmonics generation, frequency shifts and zonal flow generation by

initially monochromatic waves are presented.

Model

Let us consider an inhomogeneous plasma slab with the background plasma density n, ~
exp(x / Ln) in the external magnetic field B = B, (e, + ey (x / L)) with the shear length Lg,.
Electrons, unlike ions, are magnetized, smoothing an electrostatic potential @ along the magnetic
field lines. In this case, 3D generalization [4] of the Hasegawa-Mima model equations holds:

dW/dt + dv/dz = 6®/dy,
dv/dt + d®/dz = 0, (1)
Y= 0 - A,

where v is the ion velocity along the magnetic field direction Oz, ¥ = ¥, is the only non-zero
component of the generalized vorticity. The operators in (1) are

didt=o/et +J[ @, ... 1, J[F,G]=0dF/ox 6Gldy - oF/dy 6G/ox,
d/dz = 6/0z +S x 8ldy, S=Lg /L, AD = D/Ox> +5D/oy.

The system (1) is written in dimensionless variables ewgt, X/rp, y/rg, £2/rg, e®/T.e, where the
ion cyclotron frequency ©¢ = eBy/Mc and ion sound speed c¢; = (TJ/M)" determine the
characteristic dispersion length rg = ¢/ @.; and the small parameter ¢ is equal to the ratio rg / L.
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Symmetries
First, to express the symmetries in more simple form, let us perform the transformation
O=P(t,x,y+t,z)—X, v=v(t,Xx,y+t,z)

which removes the term 6®/dy from the first equation of the system (1).
In the shearless case, S = 0, we obtain Lie group of symmetry by the standard procedure.

This group is as follows:
Xy=0lot, X,=0/0x, X3=0/8y, X4=0/0z,
Xs=-y 0/0x + x 0/0y,
Xe=10/0t+20/0z- D 0/0D - Y 8/6¥ - v dlov, (2)
X=F(t,z) (00D + 0/6¥) + G(t,z) d/ov,
where F and G satisfy the linear wave equation in variables t and z:
OF/0t+ 0G/0z=0 and 0G/ot+ dF/oz=0
The model (1) also admits the reflection symmetries

a {(x,O,¥,v}->{-x,-0,-¥,-v}
b) {t’y,V}%{‘ta'y,‘V} (3)
c) {zv}->{-z-v}

In the presence of magnetic shear, S # 0, the symmetry group is reduced to
Xy, X3, X4, and X 4)
and to the less number of the reflection symmetries

a) {xz,®,¥Y}->{-x,-2,-0,-¥)} (5)
b) {tyz}->{-t-y -z}

The physical reason for this symmetry reduction is the explicit and anisotropic dependence of the
external magnetic field on the x-coordinate, i.e. along the background plasma density gradient.

Solutions

Let us review now the most symmetric solutions of the model (1) in the shearless case
(8.=10). .
a) Pure drift waves, 6/0z = 0, periodic in variables x and y solutions. In this particular case
we have two exact solutions, namely the periodic zonal flow of the plasma, ® ='sin(k; x) and the

monochromatic standing wave:
@ = sin(k; x) cos(w; t + ks y).

Amplitudes of these solutions are arbitrary, since the nonlinear term exactly vanishes.
On the combination of these exact solutions the nonlinear term is not zero, so we obtain the
perturbative solution describing drift wave interaction with a zonal flow:

O=a® +a’D+... (6)

®; = (1 + B cos(o; t+kay+dw t) sin(k; x),
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where ©; =k, /(1 + k;* + k,?) and 80 = (0*12) k)° (3 ki* + ky?). The constant B is the weight
parameter of the standing wave relative to the zonal flow.

Dy =B ko’ (1 +ki” + k%) (cos(wy t +ky ¥) - cos(; t + ks y)) sin(2k; x) / (6ky),

where @, =k, /(1 + 4k;* + k7).

As a result of the interaction, higher harmonics are generated, beginning from the second
order o of amplitude. Frequency shift 8o of the main harmonic appears as the third order effect (
~ o). Pulsations of the zonal flow also appear in the third order, the corresponding complicated
expressions are omitted here.

b) 3D nonlinear drift ion acoustic standing wave, which potential @ is odd in the plasma
inhomogeneity direction x and even along the external magnetic field (variable z) and on the
combination of time and drift variables t, y. Additional nonlinear term J[ @, v ] is not zero and we
must to built the perturbative solution:

O=ad +o>D;+ ..., v=avi+oivy+... (7)
@, = sin(k; x) (@) cos() cos(w; t +k; y) + w; sin(0) cos(w; t + k, y)) cos(ks z)
vi = ks sin(k x) (cos(0) sin(; t + ks y) + sin(8) sin(w; t + k; y)) sin(k; z),

where the parameter 6 determines the relative weight of the components with the frequencies (in
linear approximation) m; and o,:

01,2= (ko £ (k" + 41+ ki* + k') k?)') 7 2 (1 + K + k).
In the second order of amplitude higher harmonics are generated
@, = (ki ko/16) sin(2k; x) cos(2ks z) (2(w; + w; Ho; - @2) cos(26) sin*(w3 t/2) -
- (01 + ®2) 03 (cos((@) - ®2) ) - cos(s 1)) sin20))/(; - 1) - ©32),

va == (ki ka/16)(1 + 4k *)'™ sin(2k; x) sin(2ks z) (@1 + @2 +(®; - ) c0s(26)) sin(wst) +

(01 + 02) 03 5in(26) (01 - ) (sin((o; - ®;) t) — o3 sin(e; D)/(©; - ©)’ - ©32)),

where ©3 = 2ks/(1 + 4k, )“2 It is mterestmg that for any combination of waves determined by the
weight factor 0, the second order (o®) contribution does not depend on the drift direction coordinate
y. Thus, in the second order pure zonal flow is generated, the corresponding ion velocity
components are vy = - 00,/dy = 0 and

vy = 0D,/0x = (k> ko/8) cos(2k; x) cos(2ks z) (2(w; + @3 +(@ - @2) cos(20) sin*(w; t/2).  (8)

In this way the result obtained in [5] for the particular case © = 0 is generalized to the temporal
evolution of the arbitrary combination of the waves with the frequencies (in the linear
approximation) @, and ®,. This solution describes zonal flow generation by the combination of
initially monochromatic drift ion acoustic waves. The generation is self-consistent, instead of the
zonal flow generation by the drift-wave pump is considered in [6].

In the third order (oz3 ) the shifts 8w;; and S, of the main frequency ®, appear in ®@; and v,
respectively (6 = 0 expressions are presented for simplicity):

Bon /o) = (o’ /16 ) ki’ k* (ka2 -3 kD) / (1 + k2 + k),
(9)

(Bwi2/ @) =-(a?/16 ) k> k.
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The presence of the terms with combination frequencies in the third order can lead to the
parametric instabilities.

In conclusion, it must be noted that the 3D model (1) includes many physical effects: higher
harmonics generation and frequency shifts, parametric instabilities, zonal flow generation by
initially monochromatic waves etc. Symmetry considerations facilitate essentially their treatment by
helping us to obtain exact, perturbative and numerical solutions of the nonlinear problems.
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JPEN®OBO IOHHOAKYCTHYHI XBHJII TA iXHI CUMETPIi
B. b. Tapanos

PosrisaaeTbes TpUBHMIpHA MOaenb 1S MOB’A3aHMX Mix coBOK0 Apeii(hoBUX Ta iOHHOAKYCTHUHUX
XBW/Ib. OTpHUMaHI NEpETBOPEHHS CUMETPIi Lii€i MOAENi B MPUCYTHOCTI MarHiTHOTO WIMPY Ta Y 6e3unpoBoMy
BUMAAKy. 3HaMACHO AefKi 3 HaHOINbL CMMETPHYHMX PO3B’A3KiB, TOYHHMX Ta OJEPKAHMX 3a JOMOMOrOK
Teopii 30ypeHb. 30kpema, OaepkaHi pPO3B’A3KM, IO MPEACTABSAIOTH TEHEPAL0 30HABHHX MOTOKIB
NOYaTKOBO MOHOXPOMATHYHHUMH XBUIIAMM.

JAPEH®OBO MOHHOAKYCTHUYECKHE BOJHBI U UX CUMMETPHU
B. B. Tapanos

PaccmoTpena TpexmepHas Monenb i CBA3aHHBIX JpeiiOBBIX M HOHHOAKYCTHHECKMX BOJH.
ITosryuenbr mMpeobpa3oBaHns CUMMETPHH ITOM MOZEH B MPUCYTCTBUM MAHHTHOIO LIMPA U B GE31HPOBOM
ciyyae. HaiaeHsl HekoTopble M3 Haubonee CHMMETPUUHBIX PEILEHHHA, TOUHBIX H MOTYYEHHBIX C NOMOLIBIO
TEOpHM BO3MYLUEHHH. B 4acTHOCTH, MOMyueHbl pelleHHs, MPEACTABISIONINE TEHEPALMIO 30HANbHBIX
MOTOKOB MEPBOHAYATLHO MOHOXPOMATHUYECKHMHU BOJTHAMH.
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