A. A. Rudchik, V. K. Chernievsky, A. T. Rudchik, A. Budzanowski, L. Głovacka, L. Zemło, S. Kliczewski, E. I. Koshchy, O. A. Ponkratenko, O. A. Momotyuk, A. V. Mokhnach, Val. M. Pirnak, K. Rusek, I. Skwirszyńska, R. Siudak, B. Czech, A. Szczurek

Angular distributions of the ¹²C(¹¹B, ¹⁵N)⁸Be reaction were measured at the energy $E_{lab}(^{11}B) = 49$ MeV for the transitions to the ground and 2,94 MeV (2+) excited state of ⁸Be and to the ground and 5,270 MeV (5/2+) + 5,299 MeV (1/2+), 6,324 MeV (3/2-), 7,155 MeV (5/2+) + 7,301 MeV (3/2+), 7,567 MeV (7/2+) excited states of ¹⁵N. The data were analyzed by the coupled-reaction-channel method. The elastic, inelastic scattering and one- and two-step transfers were included into the coupling scheme. The data of the ¹²C(¹¹B, ⁸Be)¹⁵N reaction at $E_{cm} = 9,4 - 17,8$ MeV known from the literature, were also included in the analysis. It was found that in the ¹²C(¹¹B, ¹⁵N)⁸Be reaction the α - and t-cluster transfers dominate at $\theta_{cm} < 90^{\circ}$ and $\theta_{cm} > 90^{\circ}$, respectively. The optical model parameters for the ¹⁵N + ⁸Be interaction and their energy dependence were deduced.