Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2003, volume 4, issue 2, pages 19-30.
Section: Nuclear Physics.
Received: 31.01.2003; Published online: 30.06.2003.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2003.02.019

Model dependence of differential cross sections of the four-body d + d reaction

V. I. Grantsev, Vit. M. Pirnak, B. G. Struzhko

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Experimental two-dimensional proton-proton double coincidence spectrum of the four-particle d + d → p + p + n + n reaction which was obtained previously in the proton - proton (pp) quasifree scattering (QFS) kinematic conditions was simulated with a least-square method. Dominant quasi-binary processes, viz. a pp QFS and a neutron - proton (np) final-state interaction (FSI) have been taking into account. QFS cross sections were calculated in plane waves impulse approximation (PWIA) using alternate models: Simple Impulse Approximation (SIA) and a Modified Impulse Approximation (MIA). The characteristic of the latter is cutting of a deuteron wave function at small distances. The distributions of FSI neutron - proton pairs in 1S0 and 3S1 states were calculated using the Watson - Migdal model. Thus, it was possible to calculate cross sections of each process separately and to estimate a model dependence of obtained values. Usage of MIA instead of SIA in fitting of the experimental spectrum results in lower values of cross sections for QFS of protons and little higher for a double spin flip, while a key conclusion about the dominant contribution of the latter remains valid. In particular, an integrated cross section of the 2H(d, d*)d* double spin flip reaction was obtained which is 1.2 ± 0.3 mb/sr at θ cm = 90° in the case of SIA and 1.4 ± 0.4 mb/sr in the case of MIA, while the unique so far theoretical value calculated within the framework of the Super-Multiplet Potential Theory of clusters is 0.61 mb/sr.

References:

1. Конфедератенко В. І., Пірнак Віт. М., Стружко Б. Г. та ін. Укр. фіз. журнал 42 (1997) 274.

2. Конфедератенко В. І., Пірнак Віт. М., Стружко Б. Г. та ін. Укр. фіз. журнал 42 (1997) 1175.

3. Struzhko B. Journal of Physical Studies 3 (1999) 431; https://doi.org/10.30970/jps.03.431

Acta Physica Polonica B 30 (1999) 1487.

4. Лебедєв В. М., Неудачин В. Г., Стружко Б. Г. Differential cross-sections of a double spin-flip in d+d reactions and supermultiplet potential model of the interaction of clusters. Збірник наукових праць Інституту ядерних досліджень 3 (2002) 9. https://jnpae.kinr.kyiv.ua/03.2/Articles_PDF/jnpae-2002-03-2-009.pdf

5. Allas R. G., Beach L. A., Bondelid R. O. et al. Nucl. Phys. A 304 (1978) 461. https://doi.org/10.1016/0375-9474(78)90244-0

6. Watson K. M. Phys. Rev. 88 (1952) 1163. https://doi.org/10.1103/PhysRev.88.1163

7. Мигдал А. Б. ЖЭТФ 28 (1955) 3.

8. Neudachin V. G., Sakharuk A. A., Smirnov Yu. F. Fiz. Elem. Chastits At. Yadra 23 (1992) 479;

Neudachin V. G., Kukulin V. I., Pomerantcev V. N., Sakharuk A. A. Phys. Rev. C 45 (1992) 1512. https://doi.org/10.1103/PhysRevC.45.1512

9. Якубовский О. А. Ядерная физика 5 (1967) 1312.

10. Kluge W. Fortschritte der Physik 22 (1974) 691. https://doi.org/10.1002/prop.19740221202

11. Кумпф Г., Мезнер Ю., Миллер К., Шмидт Г. ЭЧАЯ 9 (1978) 412.

12. Durand M. I. Zeitschrift für Physik A 275 (1975) 397. https://doi.org/10.1007/BF01434032

13. Felder R. D., Witten T. R., Williams T. M. et al. Nucl. Phys. A 264 (1976) 397. https://doi.org/10.1016/0375-9474(76)90413-9

14. Guratzsch H., Kühn B., Kumpf H. et al. Nucl. Phys. A 293 (1977) 109. https://doi.org/10.1016/0375-9474(77)90479-1

15. Andrade E., Miljanic D., Phillips G. C. Nucl. Phys. A 337 (1980) 365. https://doi.org/10.1016/0375-9474(80)90148-7

16. Bonbright D. I., McDonald A. M., W. T. H. van-Oers et al. Phys. Rev. C 20 (1979) 879. https://doi.org/10.1103/PhysRevC.20.879

17. Gebhardt K., Jager W., Jeitner C. et al. Nucl. Phys. A 561 (1993) 232. https://doi.org/10.1016/0375-9474(93)90152-N

18. Allet M., Bodek K., Hajdas W. et al. Helvetica Physica Acta 66 (1993) 437.

19. Allet M., Bodek K., Hajdas W. Few-Body Systems 20 (1996) 27. https://doi.org/10.1007/s006010050029

20. Qin L. M., Boeglin W., Fritschi D. et al. Nucl. Phys. A 587 (1995) 252. https://doi.org/10.1016/0375-9474(95)00010-X

21. Patberg H., Grossmann R., Nitzsche G. et al. Phys. Rev. C 53 (1996) 1497. https://doi.org/10.1103/PhysRevC.53.1497

22. Zejma J., Allet M., Bodek K. et al. Phys. Rev. C 55 (1997) 42. https://doi.org/10.1103/PhysRevC.55.42

23. Toznow W., Carman T. S., Chen Q. et al. Nucl. Phys. A 631 (1998) 421. https://doi.org/10.1016/S0375-9474(98)00040-2

24. Bodek K., Glöckle W., Golak J. et al. Nucl. Phys. A 631 (1998) 687. https://doi.org/10.1016/S0375-9474(98)00092-X

25. Przyborowski M., Eggert M., Engels R. et al. Phys. Rev. C 60 (1999) 064004. https://doi.org/10.1103/PhysRevC.60.064004

26. McNaughton M. W., Griffiths R. J., Blair I. M. et al. Nucl. Phys. A 239 (1975) 29. https://doi.org/10.1016/0375-9474(75)91131-8

27. Wielinga B. J., Balder J. R., Blommestijn G. J. F. et al. Nucl. Phys. A 261 (1976) 13. https://doi.org/10.1016/0375-9474(76)90038-5

28. Durand J. L., Chauvin J., Perrin C. et al. Nucl. Phys. A 306 (1978) 173. https://doi.org/10.1016/0375-9474(78)90320-2

29. Blommestijn G. J. F., van Dantzig R., Haitsma Y. et al. Nucl. Phys. A 365 (1981) 202. https://doi.org/10.1016/0375-9474(81)90294-3

30. Djaloeis A., Bojowald J., Alderliesten C. et al. Nucl. Phys. A 273 (1976) 29. https://doi.org/10.1016/0375-9474(76)90298-0

31. Kluge W., Matthaey H., Schluefter R. et al. Nucl. Phys. A 302 (1978) 93. https://doi.org/10.1016/0375-9474(78)90289-0

32. Mdlalose T. E., Fiedeldey H., Sandhas W. Nucl. Phys. A 480 (1988) 215. https://doi.org/10.1016/0375-9474(88)90394-6

33. Howell C. R., Felsher P. D., Tornow W. et al. Phys. Rev. C 48 (1993) 2855. https://doi.org/10.1103/PhysRevC.48.2855

34. Felsher P. D., Howell C. R., Tornow W. et al. Phys. Rev. C 56 (1997) 38. https://doi.org/10.1103/PhysRevC.56.38

35. Warner R. E., Di Cenzo S. B., Ball G. G. et al. Nucl. Phys. A 243 (1975) 180. https://doi.org/10.1016/0375-9474(75)90243-2

36. Zhang Ying-Ji, Yang Jin-qing, Zhang Jie He Jian-hua. Phys. Rev. C 45 (1992) 528. https://doi.org/10.1103/PhysRevC.45.528

37. Zhang Ying-Ji, He Jian-hua, Yang Jin-qing, Zhang Jie. Phys. Rev. C 47 (1993) 468. https://doi.org/10.1103/PhysRevC.47.468

38. Leeman B. Th., Pugh M. G., Chant N. S., Chang C. C. Phys. Rev. C 17 (1978) 410. https://doi.org/10.1103/PhysRevC.17.410

39. Kuckes A. F., Wilson P., Cooper P. F. Ann. Phys. 15 (1961) 193. https://doi.org/10.1016/0003-4916(61)90012-4

40. Alt E. O., Grassberger P., Sandhas W. Nucl. Phys. B 2 (1967) 167. https://doi.org/10.1016/0550-3213(67)90016-8

41. Sloan I. H. Phys. Rev. 185 (1969) 1361. https://doi.org/10.1103/PhysRev.185.1361

42. Valković V., Rendić D., Otte V. A. et al. Nucl. Phys. A 166 (1971) 547. https://doi.org/10.1016/0375-9474(71)90906-7

43. Ohlsen G. G. Nucl. Instr. Meth. 37 (1965) 240. https://doi.org/10.1016/0029-554X(65)90368-X

44. Hulthen L., Laurikainen K. V. Rev. Mod. Phys. 23 (1951) 1; https://doi.org/10.1103/RevModPhys.23.1

Хюльтен Л., Сугавара М. Проблема взаимодействия двух нуклонов. Строение атомного ядра (Москва: ИЛ, 1959) c. 9.

45. Престон М. Физика ядра. Пер. с англ. (Москва: Мир, 1964) 574 с.

46. Machleidt R. Advances in Nuclear Physics 19 (1989) 189. https://doi.org/10.1007/978-1-4613-9907-0_2

47. Paic G., Koung J. C., Margaziotis O. J. Phys. Lett. B 32 (1970) 437. https://doi.org/10.1016/0370-2693(70)90375-8

48. Struzhko B. Укр. фіз. журнал 45 (2000) 901.