Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2003, volume 4, issue 1, pages 75-81.
Section: Plasma Physics.
Received: 18.02.2003; Published online: 30.03.2003.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2003.01.075

Possibilities to increase RF ion source plasma density

V. I. Voznyy1, V. I. Miroshnichenko1, S. N. Mordik1, V. E. Storizhko1, B. Sulkio-Cleff2

1Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine
2Institute of Nuclear Physics at the University of Münster, Münster, Germany

Abstract: The possible ways of increasing plasma density in RF ion sources to obtain higher beam brightness are reviewed. Plasma density increase is achieved by initiating an efficient RF discharge in an external magnetic field. Longitudinal magnetic field is generated by a compact magnet system with permanent magnets and ferrites of circular shape. In the source an RF discharge is set up with an external magnetic field of ∼ 40 G and argon plasma density of 3 · 1011 cm-3 for RF power input into the plasma of 40 W (fRF = 27.12 MHz). The ion current density inside an extracting electrode in the source is 10 mA/cm2 for an emission hole diameter of 0.6 mm. Measurements of the current value and current profile were performed with ion source testing equipment permitting measurements of the current, emittance, mass composition, ion beam energy spread, and RF power input into the plasma.

References:

1. Boswell R. W., Porteous R. K. Apll. Phys. Lett. 50 (1987) 1130. https://doi.org/10.1063/1.98257

2. Chen F. F., Sudit I. D., Light M. Plasma Sources Sci. Technol. 5 (1996) 173. https://doi.org/10.1088/0963-0252/5/2/009

3. Akhiezer A. I., Mikhalenko V. S., Stepanov K. N. Phys. Lett. A 245 (1998) 117. https://doi.org/10.1016/S0375-9601(98)00437-X

4. Ginzburg V. L., Ruchadze A. A. Waves in Magnetoactive Plasma (Moscow: Nauka, 1975) (Rus);

Handbuch der Physik Band 395, No. 49/4 (1972) (English Edition).

5. Shamrai K. P., Taranov V. B. Plasma Phys. Control. Fusion 36 (1994) 1717. https://doi.org/10.1088/0741-3335/36/11/002

6. A. van Steenbergen. IEEE Trans. Nucl. Sci. (1965) p. 745.

7. Child C. D. Phys. Rev. 32 (1911) 492. https://doi.org/10.1103/PhysRevSeriesI.32.492

8. Langmuir I., Compton K. T. Rev. Mod. Phys. 3 (1931) 131. https://doi.org/10.1103/RevModPhys.3.191

9. Swanson J. Nucl. Instr. and Meth. 218 (1983) 347. https://doi.org/10.1016/0167-5087(83)91005-0

10. Chen F. F. J. Vac. Sci. Technol. A 10 (1992) 1389.