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Symmetry transformations are found for the kinetic theory of the upper hybrid oscillations of the
electron plasma. It is shown that in the cold electron plasma limit the symmetry extension takes place,
allowing us to obtain the general solution which is analogous to that found previously in the Lagrangian
variables. The results are compared to the known symmetry properties of the Langmuir oscillations of the
electron plasma. The algorithm used in the present work to obtain the symmetries of kinetic models of the
plasma theory is illustrated on the example of Langmuir oscillations in the multi-component plasma.

1. Introduction

In recent decades the Lie group method has been applied to explore many physically
interesting nonlinear problems in gas dynamics, plasma physics etc. [1]. Furthermore, extensions of
the classical Lie algorithm to the integro-differential systems of equations of kinetic theory were
proposed [1 - 4].

In this work, the results obtained previously [2, 3] for the electron plasma high frequency
longitudinal waves in the absence of an external magnetic field are generalized to the case when the
constant external magnetic field is present, i.e. for the upper hybrid waves. In the Section 2, the
corresponding nonlinear integro-differential model equations are derived. In the Section 3, the
symmetry transformations obtained for the upper hybrid waves are presented, together with their
extension in the cold electron plasma case. For the sake of completeness, similar previous results
for the electron Langmuir waves are presented in the Section 4. Langmuir waves in the multi-
component plasma are considered in the Section 5. An algorithm used for the investigation of the
kinetic theory integro-differential equations is briefly reviewed. Lie group of symmetry is obtained
and its extension for the plasma containing the components with equal or closed values of the
charge to mass ratio of particles is emphasized. Conclusions are made in the Section 6.

2. Upper hybrid waves model

Let us consider high frequency plasma motion with constant ion background density no. In
this case Vlasov - Maxwell integro-differential system of equations holds:

of/ot +v - of/or - (e/m)[E + (1/c)(v x B)] - 6f/ov =0,
VxE+(1/c) 8B/t =0, V-E=4ne (ng-]fdv), (1)
V x B =(1/c) dE/ot - (4ne/c) [vfdv, V-B=0

where f(t, r, v) is electron distribution function. Let us assume that the plasma is subjected to a
constant external magnetic field

B=Bye, Bo=const,

so the electron cyclotron frequency is equal to we = eBy / mc. Let us restrict ourselves to the
transverse plasma movements (see, e.g. [5]):

E=E(tx)ex, 0/0z=0, 0/dy=0.

Electron distribution function f has been integrated over v, and longitudinal current is not present,
[ v, f dv, = 0. In this way we obtain the simplified system of equations describing upper hybrid
waves in the electron plasma: -
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o/t + vy Of/0x - (e/m) E 0f/0vy + 0 (Vx Of/0vy - vy 8f/8v,) = 0,
OE/0x = 47e (ng - [ £ dv), Q)
OE/ot = 4me [ vy fdv,

where dv = dvydvy. This simplified system, however, still remains integro-differential. External
current density must be added to avoid possible nonlinear generation of the magnetic field:

jo=joey, jo=eryfdv.
This statement completes the formulation of the upper hybrid model equations.
3. Symmetries and solutions for the upper hybrid waves

Continuous symmetry transformations for the integro-differential system (2) can be found
having used an indirect method exploring the symmetry of an infinite set of equations for the
moments of the distribution function f [2, 3]. After some complicated but straightforward algebra,
we obtain the following Lie symmetry group admitted by the system (2):

Xy =0/et, X,=0/0x,
X3 = 0/0vy - (m/e) o 0/0E,
X4=x0/0x + E 0/0E + vy 0/0vx + vy 0/0vy - 2f 3/0f, (3)
Xs = cos(®ynt) 0/0X = @yun Sin(@unt) 0/0vy +@ce COS(Oynt) /0vy + (m/e) Oun cos(mypt) O/0E,
X = sin(@unt) 0/0X + ®un cOS(Wunt) 6/0Vx +wce Sin(wynt) 8/0vy + (m/e) Oun’ sin(wypt) 0/0E,

where mpez = 4me’ny/m is electron Langmuir frequency and o’ = copc2 + ¢’ is the frequency of the
upper hybrid oscillations.

A considerable extension of the symmetry takes place in the cold electron plasma limit, i.e.
for the distribution functions of the form

f(t, X, vx , Vy) = n(t, X) (v - u(t, x)) 8(vy - v(t, X)). 4)

Equations (2) are reduced to the partial differential equations for the functions u, v and E of the
variables t and x:

ouw/or = -(e/m)E - 0V, OV/0T = weu, OE/Ot = 4mengu &)

where 0/0t = 0/t + u 0/0x. Their solution by the use of Lagrangian variables is made possible due
to adding to (5) the equation for x(t):

ox/Ot=u (6)

and treating x, E, u and v as the functions of 1 and the initial value of x(t), i.e. Xo = x(0). It is very
easy to observe that:

oPu/or® + o)uh2 u=0
and the general solution is as follows:
X =I; cos(wynt) + I sin(wypt) +13

U= 0y [ sin(oynt) + I cos(@ut)] (7)
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E = 4neng [I; cos(@ynt) + I sin(wynt) + 14]
V = O [I1 cos(@ynt) + Iz sin(@unt)] - (mpez/ Oce) 14

where I = { I, ... , I } are the functions of xo which are determined by the initial conditions, e.g.
I,(x0) = u(0, Xg) / ®uy . In this way complicated expressions for x, E, u and v presented in [6] can be
obtained. From the point of view of the symmetry approach, this possibility of finding the general
solution in Lagrangian variables is related to the fact that the system (5), (6) can be presented in a
form

Ut =0 @®)

which is invariant, as it is readily seen, under the wide class of transformations depending on
arbitrary functions F and G:

I'=F), 1 =G(t,I. 9)

The transformations (9) allow us to obtain the general solution of the system (5), (6) starting
from the trivial zero solution. In fact, the trivial solution

L=0,..,I4=0
is generalized by the transformation (9) to
Py, ..., 1) =0, ..., Fs(ly, ... , 1) =0,
with arbitrary functions F, ... , F4 . Then we can express the solution in a form
L=g ), ..., a=gs (I1).

Finally, we determine the functions g, to g4 by the general initial conditions for u, v and E.
This will reproduce the solution obtained in Lagrangian variables. So the possibility of solving cold
electron plasma equations is due to the sufficiently large extension of the model symmetry.

4. Langmuir electron plasma waves

Let us review shortly the previous results obtained in [2, 3] for the longitudinal electron
plasma waves. In this case, i.e. for the system of equations (see, e.g. [6]):

of/ot + v, of/oz - (e/m) E, of/ov, =0,
OE,/0z = 4me (ng - [ fdvy), (10)
OE,/ot = 4me [ v, f dv,)

where the distribution function f has been integrated over vy and vy, the symmetry group is as
follows [2, 3]:

X =0d/dt, X,=0/0z,
X; = c08(@pet) 810z - Ope SIn(@pet) 83V, + (m/e) @pe” COS(pet) O/OE,,
X4 = sin(pet) 8/0z + 0pe COS(Wpet) 0/0V, + (m/e) mpe2 sin(opet) 0/0E,, (11)
Xs =7 8/0z + E, 0/0E, + v, 8/dv, - £ d/0f.

In the cold electron plasma limit

f(t, z, v;) =n(t, z) (v, - w(t, z)) (12)
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the system (6) is reduced to the partial differential equations
ow/ot = -(e/m)E,, OE,/0t = 4nenyw (13)
where 0/0t = 0/0t + w 0/0z. Invariants I = { I}, I, I3 ) in this case have the form
I,=z-E,/4neny,
I = (W/wpe) cos(wpet) + (E; / 4meny) sin(mpeT), (14)
I3 = (W/@pe) sin(opt) - (E; / 4meng) cos(wpet).

The invariance under the transformations (9) made it possible to obtain the general solution of (13)
from the trivial one or to solve this system in Lagrangian variables as it was done in [6].

5. Langmuir waves in the multi-component plasma

Let us consider now high frequency oscillations of the multi-component plasma described
by the Vlasov - Maxwell equations for the distribution functions fu(t, X, v), where the index o = 1,
... » N is used to label plasma components, and the electric field E(t, x):

Ofy/0t + v 0f,/0x + (eo/mq) E 8f,/0v =0
(15)
OE/OX =4n S 4 eq | £, dv

and
OE/dt+4n o eq vidv=0 (16)

where X, means the sum over o from 1 to N, charge and mass of particles of the a.-th component of

the plasma are denoted by e, and m, , respectively.
Let us now review shortly the algorithm [3] which will allow us to obtain the symmetry

group of the system (15). First, we introduce the moments of distribution functions:
M o(t, X) = [ V¥ fu(t, x, v) dv (17)

where k =0, 1, ... . From the system (15) we readily obtain the partial differential equations for the
moments My, and the electric field E:

6Mk,a/8t + aMkﬂ,a/ax - (e/mg) Ek Mk-l,a =0,
(18)
OE/0x = 47 3 o e Mo,

Then, we restrict ourselves to the truncated system of equations (18) withk =0, 1, ... , Kmax,
so the continuous symmetry group in the space of the variables t, x, E, My, can be found by the
standard Lie method. This group is as follows [3]:

X;=0/et, X,=0/ox,
X3 =t /X + Z o kK Mi1.0 0/0M o
X4=t0/0t =2 E O/ICE - Z o (k +2) My o 0/0Mi (19)
Xs=x 0/0x + E 0/0E - T \ o k My q 6/0Mj o
Xy =2 (- O¥Po/OX /OMimaxa + OPo/Ot 3/OMimax+1 o

where Wq(t, X) = Aq(t) X + Bo(t) , Ay and By, are arbitrary functions of t.
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The transformation generated by Xy acts on the moments Mymax o and Mymax+1.« alone. So it
disappears in the limit kmax — 0. To obtain the rest of transformations X; - Xs in the kinetic
variables t, X, v, E and f;, the generating functional F, can be used:

Fo (t, x | K) =] fu(t, X, v) € dv =, ((ix)"/n!) My o(t, X). (20)
In this way, we finally obtain (see [3]) the following Lie group of symmetry for the system (15):
Xy =0/ot, X;=0/0x,
X3=10/0x + 0/0v,

X4=t0/0t—-2E 0/0E —v 0lov - Z 1, 0/0f,, o
Xs=x0/0x + EO/CE + v 8/dv - X  f, 0/of,.
In addition, if there are the plasma components with
(ey/my) = (ev/my) (22)
for some p and v, additional symmetries appear
X = £, (0/0f, - (e /ey) O/61,). (23)

The property (22) is satisfied (at least, it is good approximation), for deuterium and helium ions.

The same symmetry group can be found [3] by the same algorithm if we consider system of
the equations (15), (16) instead of the pure Vlasov-Poisson system (15).

It must be noted that the symmetry extension (23) takes place not only for the Langmuir
waves described by the simplified system of equations (15) or (15), (16), but also in the general
three dimensional case:

of,/ot + v - Of/0r + (eo/mg)[E + (1/c)(v x B)] - of,/ov =0,
VxE+(l/c)0B/ot=0, V-E=4nX e, ]y dv, (24)
V x B=(1/c) OE/dt - (41/c) T g e [ vE, dv, V-B=0.
Thus, this symmetry extension is characteristic for the general collisionless plasma kinetic theory.
6. Conclusions

In this work the invariance of the integro-differential equations for the nonlinear upper
hybrid waves (2) was studied. Continuous symmetry group (3) has been obtained. Among the
symmetries are time and space homogeneity (X; and X3), the non relativistic remnant of the Lorentz
transform in the direction perpendicular to the external magnetic and the perturbed electric fields
(X3), similarity transform (X4) related to the fact that in the equations (2) no assumptions are made
a priori about the plasma temperature and thus no characteristic thermal velocity is contained in the
system. Transformations Xs and X¢ are the peculiar specific ones for the upper hybrid waves. They
mean that the spatially homogeneous upper hybrid oscillations can be included in arbitrary solution
of the model as, e.g. the nonlinear reaction of the system to the rapid homogeneous external current
flash.

It was shown also that in the cold electron plasma limit (4) the symmetry extension allows
us to obtain implicit, but general solution, which is equivalent to better known procedure of solving
equations in Lagrangian variables. Comparison of the above mentioned results with symmetries and
solutions for more simpler theory of electron plasma high frequency waves in the absence of the
external magnetic field shows very close qualitative analogy.
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An algorithm for the investigation of the kinetic plasma theory symmetries is presented and
illustrated on the multi-component plasma model for the Langmuir waves. This algorithm, firstly
published in the preprint [3], was used in the present work for the 1D in x-space and 2D in v-space
model of upper hybrid waves.

Symmetry extension for the plasma containing the components with closed values of the
charge to mass ratio of particles was emphasized, following the preprint [3]. This property is
characteristic for the general collisionless kinetic plasma theory (24).
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CUMETPIi KIHETUYHOI TEOPIi IUIA3ZMU
B. b. Tapanos

OnepkaHo MePEeTBOPEHHS CUMETPii 1 KIHETHMYHOI Teopii BEPXHLOTIGPUAHMX KOIMBAHb
esieKTpOHHOT 11asmu. [lokasano, wo y HabmmwkeHHI XONOIHOI €eKTPOHHOT MIa3mMu BifGyBaeThcs 3HAUHE
PO3LIMPEHHS CHMETPIi, 3aBAAKH AKOMY CTA€ MONJIMBHM OJIEPKAHHS 3aralbHOrO PO3B’A3KY, aHANONYHOTO [0
3HAHIEHOro paHille MpH 3acToCyBaHHi 3MiHHMX Jlarpamwka. PesynbraTh nopiBHAHO 3 BiZIOMHMH BNAcCTH-
BOCTAMH CHMETPIii JIHTMIODIBCBKMX KOJMBAHL €NEKTPOHHOI IUIa3MH. 3acTOCOoBaHMit y poGoTi mia
3HAXO/DKCHHS CHMETpiH KIHETHYHMX MOJe/eld Teopii Ia3sMH airopuTM MpOiMKOCTPOBAHO HAa TPHMKIAA
JIEHrMIOPIBCBKHMX KOJIMBaHb 6araTOKOMIOHEHTHOT I/1a3MH.

CUMMETPUU KUHETWYECKOW TEOPUM ILJIA3ZMBI
B. b. Tapanos

Haiinensl npeoGpa3soBaHMs CHMMETPHM KHHETHYECKOH TEOPUM BEPXHErMOPHAHBIX KoneGaHmii
SMEKTPOHHOM Muia3Mbl. [IokazaHo, 4TO B MpPUOTKEHHM XONOJHOHW SJIEKTPOHHOH MNa3Mbl MPOMCXOJHUT
3HaYHMTEbHOE PACILIHPEHHE CHMMETPHH, OJ1arofaps KOTOPOMy CTAHOBHTCS BO3MOKHBIM MOyUeHHE OBLIEro
PCIICHHs, aHANOTHYHOTO HAMJICHHOMY paHee C TOMOWIBIO TNepeMeHHbIX Jlarpamka. Pesysbrarhl
COTIOCTABJICHBI C U3BECTHBIMH CBOACTBAMH CUMMETPHH JIEHTMIOPOBCKHMX KOJIEOAHUH 3/IEKTPOHHOM Ma3MBl.
[lpumeHeHHbIA B paboTe s MONyYeHHs CHMMETPHH KMHETHYECKHX MOJENeH TEOPHM IUIa3Mbl arOpPHTM
NPOXJLTIOCTPUPOBAH Ha NMPUMEPE JIEHIMIOPOBCKHMX KOTeOaHHit MHOMOKOMITIOHEHTHOM TJ1a3MBl.
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