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THE IMAGINARY PART OF THE NUCLEON-NUCLEUS OPTICAL
POTENTIAL IN HOT NUCLEI

V. P. Aleshin
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

In the present paper, we describe a semiclassical method of calculation of the imaginary part of the
nucleon-nucleus optical potential, W, in hot nuclei. A practical means to account for the temperature
dependence of ¥ in statistical particle-emission calculations is also discussed.

1. Introduction

The concept of the nucleon-nucleus optical potential U+iW provides the proven means to go
beyond the pure shell-model description. This concept was introduced in 1952 to model the
continuum single-particle states, £ > 0. Later on, it was extended to describe the strength functions
of the bound single-particle states, £ = E. — 0, and the spreading widths of the hole states E < E .

( E 1s the Fermi energy).

The formal relation of W to the mass operator (e.g. see [1]) established in 1959 [2] paved
the way for microscopic calculations of # in terms of the nucleon-nucleon interaction in nuclear
matter and in finite nuclei. For a review, see Refs. [3] and [4, 5], respectively.

On formal replacement of the step-function occupation numbers with the temperature-
dependent Fermi function, the microscopic expression for W can be used to calculate the imaginary
part of the nucleon-nucleus optical potential in hot nuclei. The most important application this
quantity finds in microscopic models of friction coefficients of slow collective motion [6, 7].

Calculations of temperature-dependent /' in nuclear matter [3, 6, 8] and in finite nuclei [7 -
10] have been performed. The strongest variation of W with the temperature 7 are found at

particle energies close to £, . According to Ref.[7] owing to the temperature dependence of W , the

quadrupole friction coefficients increase from zero at 7'~ 0 to the wall formula value at 7"~ 3MeV.

In the present work, we study the 7 -dependence of W at particle energies E= 0-10 MeV
typical for nucleons evaporated from hot nuclei. It is evident from general considerations that the
I'-dependence of W at these energies is much weaker than at E~ E.. On the other hand,
evaporative properties are easier to study experimentally than the dissipative ones.

Sections 2 and 3 of this work present the derivation of semiclassical microscopic expression
for W in hot nuclei. In Section 4 we perform numerical studies of radial, particle-energy and
temperature dependencies of . A practical means to account for 7 -dependence of W in
statistical particle-emission calculations are discussed in the last section. The parameters involved

in computations of W are described in the appendix.
2. Quantum expression for W

In the following the two-body interaction is assumed to be diagonal in spin-isospin quantum
numbers s

(8,5, [VF = F")|s584) = 85153055y VF = 7') (1)
and v(¥ —F') is supposed to be a zero-range one

wr —-r")=V,(F)é(r -r"). (2)
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With these assumptions, the general expression for W (see [1], p. 131, 206, 207) takes the
form (we puth =1)

W EFFY=-3 3. 0)(FWin3aVasar @y (F)S(E + Ey — Ey — E,)(ny i3y + Fiynyny), 3)
11234
where E is the energy of the particle. The ¢,(7) and E, are the eigenstates and eigenvalues of the
single-particle Hamiltonian

1

H=——
2m

V2 +U(F),
where m is the nucleon mass and U(7) is the one-body potential. Moreover,

Vigss = [dF @ (F)p; FIV o (F)ps (F)ps (F) )
are the matrix elements of the nucleon-nucleon interaction,

1

- 14 g EMIT

®)

n

i

are the Fermi-gas occupation numbers at temperature 7 and chemical potential 4 and 7, =1-n,.

In derivation of Eq. (3) we took into account that for the spin-isospin independent zero-
range interactions the summation over s,, s;, s, in the general expression for W [1] is reduced to

finding the sum

> (152 | 8354 (5453 [(1= P sp51)=3(s, |51},

525354

where P is the spin-isospin exchange operator. The omission of the exchange term (as done in
Ref.[4]) would give the factor 4 instead of 3 in the above expression.

Making use of the standard presentation of the delta function §(&) = (27)™ J. dte'” , we can

present W5 (7,7") as follows
W E (7,7 = =32V (FIV, (7) | —2‘11 {E’E’G” 7. mle"E ] +e et @ pler ¢ )f } (6)
T

where G” and G” are determined by

GP(F.F)=2 0, (e np ),  G"(F.F)=X 0, (Pe Ao (7).

3. Classical approximation
The Weyl symbol of W ®)(7,7') is defined by (e.g. see [15, 16])

WE (K, R) = [dze™w E (R-Z,R+7). %)

)
N | =

As shown in Refs. [11-14], the quantity W,f,E )(IE' ,R) taken at K =.2m(E —U(R)) , provides the
best local equivalent of the nonlocal potential # ®)(7,7'). In spherical nuclei this quantity will not

depend on the directions of K and R and is denoted as W (E,R).
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Let us find the classical approximations for the functions G” and G”, following the method
suggested in Ref. [4]. For that purpose, it is convenient to present them in the form

G' (7.7 = (FI67F), G =(FIG|F) &

with
G? =n(H)e™, G"=n(H)e™ .

Here, n(H) is obtained from n, by replacing E, with H.
Denoting the Weyl symbols of G* as GL"(K,R), we can write

1 (oo R o F AT
GPI(FF) = dKe’K(r")G,’”"(K, ) 9
(F.7") o | o 5 9

The classical expressions for GP”(#,7') are obtained by introducing in r.h.s. of Eq. (9) the

classical expressions for G,’,ﬁ’h (K, R). The latter are given by
GP =n(H)e™, G, =n(H)e™ ™" , (10)

where

is the classical energy of a particle with momentum X and coordinate R .
Calculating W (7,7') defined in (6) with G”" from (9), (10) and inserting the result into
(7), we find the classical expression for the local imaginary potential:

Wy (E,R)==372Q2x) *[Vy(R)] [dK,dK,dK ;AR K + K, - Ky — K ) x
x 8(E + Hy — Hy — H,)n(H,)a(Hy)n(H,) + #(H, n(H;)n(Hy)), (1)

where K =2m(E-U(R)), H, = ijﬁ with j =234 and

I o (s E) (= X
AR, §)=—— [V, | R+ Z | R=2].
= (27:)3[1/0(10]ZI ’ 0( +2J °( 2J

It can be shown that A(R,q) ~&(g) for q~\/2m(EF —-U(0)) . Following Refs. [5, 10], we
adopt this equality at all ¢g. With this assumption our —2W,(E,R) becomes equivalent to the

semiclassical one-particle spreading width in hot infinite systems obtained in Refs. [17, 18] by the
Green function method. The lack of the complete coincidence is caused by the fact that in Refs. [17,
18] the spin (and isospin) degrees of freedom are ignored and that we passed to a zero-range force.

The Weyl symbols of G” =n([§f)e”;’ and G" =ﬁ(1:1)e"ﬁ', besides the leading classical
terms, contain the terms proportional to the gradients of U(R), which were neglected above. Since
these terms can be large in the surface region, Eq.(11) will not be reliable there, especially at 7 =0 .

At A(R,G) =95(q), the integrations over 124 and the directions of 123 and 122 in Eq. (11)

may be performed explicitly. Replacing m with the effective mass m" (R), we obtain
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W, (E,,R)=-327) [V, (R)] [m (R)]3 [dE,dE;F(E,,E,,Ey)x

X [n(Ez)ﬁ(E3)ﬁ(E1 +E, —Ey)+n(Ey))n(E;)n(E, + E, —E3)], (12)
where
1 2 . p2 2 2
F(E, By, E3) = B + B +2P Py —\[P? + P} —2P,P,a),
1
P\ P*+P}-P} |
a= PP, A (B -A)P-P)>0,
a=1, if (P, P)(P, - P,)<0, (13)
P, =\2m’ R)E, -UR), j=123
and
1 =
H(E)=W, n(E)=1—n(E).

At T =0, the chemical potential A converts into the Fermi energy E.. The integrals over
E, and E, in Eq.(12) in this case can be found analytically. For instance, at £, > E. (and 7 =0),
Eq. (12) simplifies to

W,(E,,R) =-Qn)" [V, (R)]zm*(R)—l—{(SPz ~7P2)PE +22P? - Pz)g 9(2p? - Pz)} (14)
0 1 0 101)] 1 F F F 1 F 1 ’

where $(x) is the unit step function and

Py =+2m" (RYE ~U(R)).
Equations (12), (13), (14) agree with the results given in Refs. [5, 10].

4. Illustrative examples

In Fig. 1 we survey the temperature and radial dependence of the absorptive potential
W.(E,R) in the n+>*Pb system at £ =5 MeV. The parameters used in the calculation are given in
Appendix. The figure shows that the increase of absorption with growing temperature is quite
considerable at this energy.

The rise of absorption in the surface region seen in the figure is caused by the fact that the
effective mass increases from its balk value of about 0.7m to the value of m outside the nucleus.
Note that m" (R) enters the expression for W in the third power. The factor [VO(R)]2 , which is an
increasing function of R, is also contributing to the enhancement of absorption in the surface
region.

As seen from Fig. 1, the microscopic absorptive potential at 7= 0 significantly differs, by
shape and magnitude, from the phenomenological neutron absorptive potentials by Becchetti and
Greenlees [19] and Wilmore and Hodgson [20]. In part, this is related to the fact that we employ a
simplified Skyrme interaction, without terms with the derivatives V, -V, acting on the wave
function either on the right or on the left (e.g. see [8]). As shown in Ref[5], full Skyrme
interactions, keeping such terms, provide much better agreement with the phenomenological
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absorptive potentials. Another reason for deviations of Egs. (12), (13), (14) from phenomenological
potentials is that we omitted quantum corrections.

“W(E,R), MeV
12 _

i E =5 MeV
10 -

R, fm

Fig. 1. Microscopic absorptive potentials in**Pb at £=5 MeV, T=0, 1, 2, 3, 4 MeV are shown as solid
lines; Becchetti — Gneenlees and Wilmore — Hodgson potentials as long-dashed and short-dashed lines,
respectively.
From the inspection of Eq. (12) forW,(E,R), it is expected that the general trend of
W, (E,R) as a function of temperature can be described by the factor

fe(TM)=g(E,T)/ g(E,0),
where the function

8(E.T) = [dE,dE; [n(E,A(Ey)A(E + Ey — Ey) +7(Ey )n(E; Jn(E + E, — Ey)]

does not depend on the 2-body interaction.
To verify this expectation we compare in Fig.2 the function f,(7) with the ratio

W, (E,R)/Wy(E,R) as functions of 7. The comparison is made inside the nucleus (R = 0) and in
the surface regionR =R ., where W, (E,R) reaches its maximum. According to F ig. 1,
R, =7.5fm. The calculations are performed at £ =2 and 5 MeV.

From Fig. 2 one can see that at fixed 7', the temperature-enhancement factor f:(T)is
greater for the lower value of E. Such behaviour of f,(7) is easily to understand from physical
considerations (e.g. see [21]). One also observes that inside the nucleus the temperature dependence
of W, (E.R)/W,(E,R) is nicely reproduced by f,(7') in the whole range of temperatures, whereas
a good description of this ratio in the surface region is achieved only at high temperatures
(T >2MeV).

5. Conclusion

The range of temperatures 7 =0-4MeV chosen above is typical for nuclei emerging at
different stages of particle-emission cascades accompanying heavy-ion fusion reactions at beam
energies below 10 - 20 MeV/u. The transmission coefficients of nucleons used in modeling such
cascades are usually calculated with W extracted from reactions on cold, ground-state nuclei. This
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contradicts to the principle of the detailed balance, according to which the target nucleus should
have the same temperature as the residual nucleus.

W+(E.R)/Wo(E,R)
3 =

N aaooa R=0 E =2 MeV

o+ b P Rmax
5 fi(T)
b E=5MeV

1 4
0 T T T T T

0 1 2 3 4 5

T, MeV

Fig. 2. The ratio W, (E,R)/W,(E,R) in 2%pp at R=0and R=7,5 fm for E=2 and 5 MeV as a function

of temperature in comparison with the function f (I") defined in the text.

One may expect that the f(7") function will be capable to reproduce the temperature trend
of W,(E,R)/W,(E,R) not only in the simple model, used above, but also in more sophisticated

calculations which are consistent at 7= 0 with the phenomenological absorptive potentials
W,,(E.R). Therefore we recommend to introduce in the statistical calculations the absorptive

potentials equal to f,(T)W, (E,R). This would allow to assess the degree to which the

temperature effects in W are experimentally observable.
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Appendix

The two-body and one-body potentials, effective mass and chemical potential used in our
calculations are taken from Refs.[5,10]. The function ¥, (R) in Eq. (2) for the nucleon-nucleon

potential is chosen in the form

Vo(R) =ty +130(R),

1y =—1020MeVxfm®, 1y =2404MeVxfm®,

p(R) = poll+e®Fea [ 5 =017 fm ",
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1 1
R, =(1.12A3 -0.864 3me, a,; =0.54fm.

The mean field potential is given by

m Uy

UR)=— .
m" (R) 1+e(R—Rw)/aw

Uy = (— 4551+ 17.68—]Y—j—ZJ MeV,

I
where R, =1.2743fm, a, =0.67 fm.

The effective mass is taken in the form

* m
m (R) =]~ m
m 1+ e(R—R“)/a“ 2

where m, is the effective mass in the center of the nucleus m, = 0.7m .
The chemical potential A is determined from the usual equation

[;" dEg(Eyn(E) = 4

where g(E) is the single-particle level density, B = U(0) is the minimum of U(R), E, is the
upper limit in the integrals over energy. For £ <0, g(E) = g (E), where

g, (B)=2 [dRR>m" (R)2m" (R)(E -U(R)) .
T

For £>0, g(E)=g.(0)v1- E/B . Throughout this work, E, = 40 MeV is assumed.
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VSIBHA YACTHHA HYKJIOH-SIEPHOI'O ONTHYHOI'O IOTEHILIATY
B HATPITHUX SIIPAX

B. I1. Ansomun

OnucaHo HaMiBKIaCHYHMH METOA pPO3paxyHKY YABHOI YaCTHHW HYKIOH-SJEPHOTO ONTHYHOIO
noreHuiany W y Harpitux sgpaX. OOroBoproroTbCS NMpPaKTU4HI cnocoOM BpaXyBaHHS TeMIMeparypHOI
3aJIEKHOCTI W'y CTATUCTHYHHUX PO3paxyHKax eMicii YaCTHHOK.

MHHUMAS YACTH HYKJIOH-AEPHOI'O OIITHYECKOI'O INOTEHIHAJIA
B HAT'PETBIX SJIPAX

B. I1. Aneminn

OnucaH MOJyKJIaCCHYECKH METOA pacyeTa MHHUMOH 4YacTH HYK/IOH-SAEPHOTO ONTHYECKOro
noteHnmana W B Harperblx sapaX. OOcykaaloTcs NpaKTHYECKHE CrocoOel y4eTa TeMIepaTypHOH
3aBUCUMOCTH W B CTAaTHCTUUYECKUX pacyeTax IMUCCHH YacCTHLL.

Received 18.03.02,
revised - 11.09.02.

3BIPHUK HAYKOBMWX I1PALIp IHCTUTYTY AAEPHUX AOCIIJDKEHDL Ne2(8) 2002 27



