STUDY OF THE ³H(³H, 2n)⁴He AND ³He(³He, 2p)⁴He REACTIONS IN THE FRAMEWORK OF THREE-CLUSTER MICROSKOPIC MODEL

V. S. Vasilevsky¹, A. V. Nesterov¹, F. Arickx², J. Broeckhove²

¹ Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine ² Antwerpen University, Belgium

The reactions ${}^{3}\text{H}({}^{3}\text{H}, 2n)^{4}\text{He}$ and ${}^{3}\text{He}({}^{3}\text{He}, 2p)^{4}\text{He}$ are investigated within a fully microscopic cluster model featuring a three-cluster exit channel. A Hyperspherical Harmonics basis is used to describe the threecluster continuum. The resulting astrophysical *s*-factor of both reactions is in good agreement with experimental data. Analysis of the low-energy scattering parameters reveals no evidence for a hidden resonance state would increase the cross-section of the reactions, and would help to resolve the solar neutrino problem.