DIFFERENTIAL CROSS-SECTIONS OF A DOUBLE SPIN-FLIP IN d+d REACTIONS AND SUPERMULTIPLET POTENTIAL MODEL OF THE INTERACTION OF CLUSTERS

V. M. Lebedev, V. G. Neudatchin, B. G. Struzhko

The experimental two-dimensional proton-proton coincidence spectra of the four-particle reaction $d + d \rightarrow p + p + n + n$ are simulated with regard to dominant quasi-binary processes, viz. a quasi-free scattering of protons and final-state interaction of nucleons. Differential cross-sections $d\sigma(\vartheta, E)/d\Omega$ of a deuteron charge exchange ${}^{2}H(d,{}^{2}n){}^{2}p$ reaction $(0,57 \pm 0.03 \text{ mb/sr}$ at $\theta_{cm} = 62,5^{\circ}$, $1,01 \pm 0,05 \text{ mb/sr}$ at $\theta_{cm} = 79,6^{\circ}$, $E_{cm} = 11,6 \text{ MeV}$) and spin-isospin flip ${}^{2}H(d,d^{*})d^{*}$ one $(1,1 \pm 0,3 \text{ mb/sr}$ at $\theta_{cm} = 90^{\circ}$, $E_{cm} = 23,4 \text{ MeV}$) are defined. They are compared to the cross-sections calculated in the approach of generalized (supermultiplet) potential model where the problem of the interaction of clusters A and B can be reduced to a transformations set of one-channel scattering problems with potentials $V^{[I]}$, where [f] are the allowed Young schemes for the system A + B. This is important for channels with minimum total spin S, in which the nonunitary elastic scattering amplitude T_{LS} is the half-sum of two different amplitudes $T_{L}^{[I]}$, which are invariant to SU(4). Inelastic amplitudes of the deuteron spin-isospin flip or charge exchange reactions are the half-difference of $T_{L}^{[I]}$ ones. The theoretical cross-sections of inelastic processes are obtained equal 0.48, 1.61 and 0.61 mb/sr respectively.