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The asymptotic theory of charged particle motion in electromagnetic fields is developed for the
general case of finite Larmor-radius effects by means of Krylov-Boholiubov averaging method. The
correspondence between the general asymptotic methods, elaborated by M. Krylov and M. Boholiubov, the
quasi-particle description and gyrokinetics is established. Such a comparison is used to shed more light on
the physical sense of the reduced Poisson equation, introduced in gyrokinetics, and the particle polarization
drift. Tt is shown that the modification of the Poisson equation in the asymptotic theory is due to the non-
conservation of the magnetic moment and gyrophase tremblings. It is shown that the second-order
modification of the adiabatic invariant can determine the conditions of global plasma stability and introduces
new nonlinear terms into the reduced Poisson equation. Such a modification is important for several plasma
orderings, e.g. MHD type ordering. The feasability of numerical simulation schemes in which the
polarization drift is included into the quasi-particle equations of motion, and the Poisson equation remains
unchanged is analyzed. A consistent asymptotic model is proposed in which the polarization drift is included
into the quasi-particle equations of motion and the particle and quasi-particle velocities are equal. It is shown
that in such models there are additional modifications of the reduced Poisson equation. The latter becores
even more complicated in contrast to earlier suggestions.

1 Introduction

Plasmas can be considered as a paradigm of a very complex dynamic system.
Therefore simplified theoretical descriptions and numerical schemes based on
asymptotic methods are of great importance. The asymptotic theory of charged
particle motion in electromagnetic fields is developed for the general case of
finite Larmor-radius effects by means of Krylov-Boholiubov averaging method.
The correspondence between the general asymptotic methods, elaborated by
M. Krylov and M. Boholiubov, the quasi-particle description and gyrokinetics
is established. Such a comparison is used to shed more light on the physical sense
of the reduced Poisson equation, introduced in gyrokinetics, and the particle
polarization drift. It is shown that the modification of the Poisson equation in
the asymptotic theory is due to the non-conservation of the magnetic moment
and gyrophase tremblings. It is shown that the second-order modification of
the adiabatic invariant can determine the conditions of global plasma stability
and introduces new non-linear terms into the reduced Poisson equation. Such
a modification is important for several plasma orderings, e.g. MHD type one.
The feasibility of numerical simulation schemes in which the polarization drift is
included into the quasi-particle equations of motion, and the Poisson equation
remains unchanged is analysed. A consistent asymptotic model is proposed in
which the polarization drift is included into the quasi-particle equations of motion
and the particle and quasi-particle velocities are equal. It is shown that in such
models there are additional modifications of the reduced Poisson equation. The
latter becomes even more complicated in contrast to earlier suggestions.
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2 Particles, Guiding Centres and Quasi-Particles

Let us consider the case of a non-relativistic particle of mass m and charge ¢ in
a constant magnetic field B = Bb and in the potential electric field £ = -V ®,
described by a scalar potential . The Newton-Lorentz equations of motion are

r=9, 0=00xb + @, (1)
with = ¢B/mec the Larmor frequency, and @ = qE/m = —V# the particle
acceleration in the electric field.

The magnetic field is assumed to be strong in the following sense. The
acceleration @ is treated as a small perturbation of particle motion, a - v,
A << 1, with slow time dependence, 8;@ ~ AQd, where 7 = 7, +u5, uw=b-v, and
the index L (||) is for vector components across (along) B and their magnitudes.
The electric field is assumed to vary weakly in space along the magnetlc field
direction at scales of Larmor radius order, r.b - V@ ~ @, with 77 = o2 JB
However no assumptions are made about the electric field variation across the
magnetic field, which is beyond the framework of classical references.

The cylindrical velocity coordinates vy, o, u, U = v, (cosa &+ sina §), (with
the Cartesian reference system of orthogonal and unitary vectors #, § and 5),
together with the guiding-centre space coordinates B = (X,Y,2), R=7-— PLs
with 7, = b x 7/Q the Larmor radius-vector, are convenient as phase space
coordinates. In such coordinates, the equations of particle motion take the
standard form of a nonlinear dynamical system with rapidly varying phase «:

R=ub+5xV0/Q, o = -V, 2)
6'1_ = Q8a9, Qa = —Q(l + 85_1_9),

where €, = v%/2 is the transverse kinetic energy. These equations govern the
motion of the guiding centre. They can be also written compactly as

Z=XZ at), d=-0-v(F at), (3)

with 7 = (ﬁ,u,e 1), and the notations X and v being evident. The small
parameter A can be associated with the perturbing potential 6.

3 Basic Equations of Averaged Motion
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in which the dependence on the rapidly varying phase & is removed from the
right-hand sides (M. Krylov and M. Boholubov). The above change of variables
can be called averaging transformation in this context, while the new equations of
motion can be called averaged equations or equations of averaged motion. Such
an interpretation suggests the following natural normalization conditions:

i daéa:(:? t) = 0 . da&a(a::' t) = 0, (6)

when the new variables contain all the averaged motion. Then the mean
asymptotic value Q of any function Q(Z,«,t), X and ¥ in particular, is given
by the exact expression

pa %/ 450G + 62(3, 5,1), a+0a(Z,&5), §) , (1) =
0
while the tremblings satisfy the following exact equations:
[0+ X-0;— (Q+7) 8 )68 = XX,

[0+ X 05— (U +7)8s]6a = v—17. 8)

According to the general asymptotic approach developed by Boholiubov and
Krylov, the tremblings 67 and da and any mean values can be found as asymptotic
series in increasing powers of a small positive parameter A associated with X, v
and their explicit slow time dependence.

In the first order:

—

6f=—%/dd[)?(§:‘,&,t)—X =———/da[ua:c'd Y—w),  (9)

Q=Qo + {(670s+6a-05)Q} = Qo ")Q}.  (10)

The following notation is used for any Q(Z,t):

Qn={Q}n = % [ daemq(i,at) (11)

If the tremblings are incompressible (which is true for the particular case studied
here)
0308+ 050a=0 — Q=Q + 0z {67Q} . (12)

The latter expression for the mean values is convenient since the trembling da
does not enter it explicitly.
Thus

51 =—(0—60)/Q, ba=—01, 5fs/da51,

. . 1 -
§u=—z6] . 62= —E/daéu ,
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6ﬁl=—%5x§7§f,
while the averaged equations are
R=uab+bxV6,/Q, &t = —Vb,,
€, =0, a= —-Q1 + 9.6, . (13)

In the lowest zeroth order there is no need to distinguish between a particle
quantity and its mean asymptotic value. Therefore if the latter is conserved then
both are invariant. In particular I = I = const in the lowest order. This means
that in the non-relativistic limit the transverse kinetic energy me, or the magnetic
moment me, /B is the lowest order adiabatic invariant. In the relativistic theory
this will be m2¢, /B, the quantity proportional to the magnetic field flux across
the Larmor circle. -

The tremblings of particle quantities about their mean values are taken into
account in the first order. Thus the particle magnetic moment is not invariant in
this order even though its mean value appears to be still conserved, I = const.
If [ is expressed in terms of original particle (or guiding-centre) variables, the
first-order particle adiabatic invariant follows:

- 1 2m )
I=1-6I=1+ %[G(F,t) - %/0 do'0(7 + ﬁb X (0—=1"),t)], (14)
where U = v, (cosa, sina), v, = v, (cosc/, sina’).
Here 6; is the potential of the mean acceleration,

0, = 0y — % Q0;{(61)2}0 — % V. {615 x VoY , (15)

g= -V, ,

while the mean potential is
0 = 6, — Q0:{(81)*}o — V- {6Ib x VéI}q , (16)

or 65 = (8o +6)/2. The potential of the mean acceleration and the mean potential
are equal only in the lowest zeroth order, f; = 6 = 65. In the first order they
differ.
The averaged equations are in agreement with the quasi-particle description
[4]. But unlike the latter they provide information about the time evolution of @.
The mean particle velocity

{Q0aP}n = {(8+X 03— v0a)P}n— P, (17)
where {Q},, means the asymptotic averaging as well as Q, for P = @, and
P= OQUJ_Z d

T=ub— Vo, x b/Q — aﬂeo/m . (18)
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agrees with the quasi-particle description. The first term b on the right describes
particle streaming along B, the second term is the electric drift velocity modified
owing to FLR (finite-Larmor-radius) effects (6, instead of ), the third term is
the polarization drift velocity also modified owing to FLR effects (6, instead of
6). The polarization drift effect and the first-order renormalization of the electric
drift velocity (6, instead of ) are of the same order. One can take

d - = 1 = - =
—=0+u-V—-—=Vhxb-V
7 t + U Q 0
in the polarization drift term within the accuracy of interest. (
If one considers the guiding-centre velocity V = R, its mean value

V = ab— Vb, x b/Q (19)

is not equal to the mean particle velocity. The equation for the guiding-
centre velocity does not contain terms which might be associated with a particle
polarization drift. However, one is accustomed to encounter polarization drift in
the guiding-centre theory.

One can imagine the following computation scheme. From given initial
conditions for particles the initial conditions for guiding centres are found, as
well as the initial charge density which determines the initial electric field via the
Poisson equation. Then the averaging transformation is used to find the initial
conditions for the averaged motion. From the latter the mean coordinates and
velocities are pushed one step forward in time by means of averaged equations of
motion taking account of initial electric field.

From the new mean coordinates in the phase space new guiding-centre
coordinates are found by means of averaging transformation, and then new
particle coordinates by means of guiding-centre transformation. These updated
particle coordinates are used to compute the new values of the charge density
and the electric field.

Then the mean coordinates are pushed one step forward in time again, and
so on. The numerical computation loop is closed.

For realistic applications this computation scheme is to be modified yet by
taking advantages of the quasi-particle description. One assumes that rapidly
varying in time electric fields can be disregarded at all, and that the self-consistent
interaction between the particles via the low-frequency (slowly evolving in time)
electric fields is significant only. Then the time evolution of the mean phase
can be excluded from the consideration, and the electric field can be calculated
self-consistently from the quasi-particle density by means of Poisson equation.

A microscopic quasi-particle density in the reduced phase space 7 is introduced
as the mean value of the microscopic guiding-centre density F. integrated over
the phase:

G@ﬂzé%mﬂﬁmﬂ. (20)
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It can be interpreted as the reduced averaged probability density for guiding
centres. One can relate the mean guiding-centre density

S 1 2 > o
Fo(Z,a,t) = —2—7;/; daF.(Z,a,t) (21)
to the quasi-particle density G. In the first order
= 1
Fo= —[G - 0z (02G) — 0a(daG) ], (22)
2m
which is the relationship between guiding centres an quasi-particles, or in more
detail 1 ;
F, = o [1 - SR-V — 6ud, — e8¢, |G .\
The mean particle density follows
Fp(,0,t) = Fu(Ff—bx T/Qu, e, ont) (23)

which is the relationship between particles and guiding centres.
The reduced Poisson equation

V. E =3¢ / v Fy(F,5,t) + p™] (24)

takes into account the tremblings of guiding-centre coordinates, §a and de, in
particular. Such tremblings produce the difference between the mean guiding-
centre density and the quasi-particle density. The tremblings §R and du do not
contribute to the averaged Poisson equation for the particular electrostatic case
considered. Thus the modification of the Poisson equation arises from the velocity
phase tremblings and the first-order modification of particle adiabatic invariant
(the transverse kinetic energy or the magnetic momentum). Therefore, it is not
necessarily related to the polarization particle drift.
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ACUMIITOTAYHUM OIMC ILIAZMOBOI TYPBYJIEHTHOCTI:
METO/JHM KPHUJIOBA — BOI'OJIIOBOBA TA KBA3I-YACTHUHKH

IL II. Cocenko, II. Beprpan, B. K. lennk

Po3BHHEHO aCHMITOTHYHY TeOpiK0 pyXy 3aps/DKEHHX YaCTHHOK y eNEeKTPOMATHITHHMX MOJfX 3a
aornomoroo Merony ycepenaHeHHs Kpunosa — BoromofoBa, sika € CNpaBe/UTMBOIO ISl YaCTHHOK i3
noBinbHUM JlapMOpiBCBKHMM pafiycoM. YCTaHOBIEHO BiAMOBIAHICTE MK 3araJbHAMM ACHMIITOTHYHUMH
metonamu, pospobnenumu M. KpwioBum ta M. Boromo60BMM, Ta KBa3i-4aCTMHKOBHM OITHCOM i
ripokiHeTHKOK. Take TMOPIBHAHHA BUKOPHCTAHO JUIS BHCBITIEHHS (i3HYHOrO CEHCY 3BEIEHOr0 piBHSHHA
Ilyacona, mo BBOAMTBCA B TipOKiHeTHIi, Ta MNOJNSpU3aLiiHOrO apeiidy HacTHHOK. ITokazano, w10
Mozudikallist piHsaHHs [TyacoHa B acUMNTOTHUHIN Teopii 3yMOB/eHa He36EPeKEHHIM MarHiTHOTO MOMEHTY
Ta ripoasoBoro konusanHs. IToxasano, mo Moaudikauis APyroro mopsiaky B aniabaTH4HOMY iHBapiaHTi
MOXX€ BHM3HA4aTH YMOBH IJIOGAIBHOI CTIMKOCTI MuIasMu i JaBaTH HOBi HeNiHilHI wieHn y 3BEJICHOMY
piBusnni  Ilyacona. IlpoaHani3oBaHO 3HiHCHEHHICT CXeM YMCENIBHOTO MOJENIOBAHHA, B  AKHX
NOJAPU3ALIAHKIA /peli() BIIIOUEHO [0 PiBHAHL PyXy KBa3i-4acTHHOK, a piBHsAHHA IlyacOHa 3anuimaeThes
He3MiHHUM. TIpornoHyeThcs MOCiOBHA ACHMITTOTHYHA MOZENb, Y AKil NONsSpHU3aLiHMii apei¢ BKIOYEHO
J10 PiBHSHb PYXy KBa3i-4aCTHHOK, a IIBUAKICTh YaCTHHKH Ta KBa3i-4aCTHHKH € OJHAaKOBOIO. I10Ka3aHo, 1110 B
TaKUX MOZENAX BHHHUKAIOTh 10JaTKOBI Monudikauii 3senenoro pisusHus [lyacona. Beynepeu nonepeatim
TIPUITYIIEHHAM, OCTAHHE CTa€ HaBiTh OUIbLI CKIIaHUM.
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