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AVERAGED DESCRIPTION OF 3D MHD EQUILIBRIUM

S. Yu. Medvedev ', V. V. Drozdov 1, A. A. Ivanov l, A. A. Martynov 1,
Yu. Yu. Poshekhonov 1, M. L. Mikhailov 2

! Keldysh Institute for Applied Mathematics, Moscow Russia
? Institute for Nuclear Fusion, Russian Research Centre “Kurchatov Institute”, Moscow, Russia

A general approach by S. A. Galkin et al. in 1991 to 2D description of MHD equilibrium and
stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux
surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by
the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape
to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators
and configurations with spatial magnetic axis can be studied. In the present report the formulation and
numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input
background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately
described by analytic scalar potential.

1 Background Modelling of 3D equilibrium plasma configurations is a challenging
task. Full 3D equilibrium codes PIES [1] and HINT [2] were employed for that during
the last decade. The existence of magnetic islands and stochastic magnetic field regions
makes the modelling time consuming, not very robust and flexible, and hardly useful for
systematic equilibrium optimization and stability analysis. More tractable conventional
model for 3D MHD equilibrium and stability studies is based on the nested magnetic
surface approximation. The standard 3D nested flux surface equilibrium code is VMEC
[3]. The 3D stability codes TERPSICHORE [4] and CAS3D [5] use the VMEC solution
as an input. The variational formulation of the equilibrium problem is used in VMEC.
Solution representation with a finite series of harmonics and higher harmonic damping
by poloidal variable choice provide the needed regularization to find an approximate
nested flux surface equilibrium. However the code convergence is sensitive to the choice
of harmonic set and significantly deteriorates with increasing resolution.

For equilibrium and stability studies based on the averaging methods a lot of numerical
codes have been developed: STEP in Princeton [6], FAR, RSTEQ, NAV, RST [7] in Oak
Ridge and others. Comparison of the results determined with these 2D and 3D codes
shows their good agreement for both equilibrium and stability in planar-axis stellarators
(7, 8.

The approach to 2D description of MHD equilibrium and stability proposed in [9] is
more general. The key idea is connected with the fact that all average methods mentioned
above are based on some approximation (less or more accurate) of real 3D metric tensor
through 2D one. It is equivalent to introducing Riemannian space R3, in which reference
3D equilibrium is close to symmetrical one. The first step in such interpretation was
carried out by Degtyarev and Drozdov in [10, 11], where it was shown that for arbitrary
3D equilibrium (with nested magnetic surfaces at least) one can construct some formal 2D
metric tensor and obtain 2D Grad-Shafranov type equation. The equation was obtained
by averaging exact 3D equation. In fact, it is the exact zero 2D moment of equilibrium
equation, like Kruskal-Kulsrud equation is the exact zero 1D moment.

1.1 Scalar equations for 3D MHD equilibria description By assuming the magnetic
surfaces a(r) = const exist the ideal MHD equilibrium problem

jxB-Vp=0, j=VxB, V-B=0 (1)

can be reduced to the field equations
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V-B=0, B-Va=0, V- (BxVa)=0 (2)
and to the force balance equation
|Va|™?(B x Va) -V x B = dp(a)/da. (3)

This system reflects the important property of equilibrium plasma configuration — the
coincidence of magnetic and current surfaces with isobars.

Separate consideration of the set of equations (2) allows one to conclude that equi-
librium magnetic field is determined in fact only by shape of magnetic surfaces. Namely,
the following statement is valid (see [10, 12] for example).

Statement. For any a priori given family of nested toroidal surfaces a(r) = const
the full set of solutions of (2) can be represented by the linear combinations

B =®&Vax Vb, +¥'Vax Vi, B=JV.0p+FV(r (4)

while each summand satisfies (2).

Here
())=4d(-)/da, V.()=nxV()xn, n= Va/|Val,

and the pairs of the coefficients ®(a), ¥(a)) and J(a), F(a) are arbitrary and refer to
toroidal and external poloidal (helicoidal) fluxes or currents. The pairs of the basis
vectors Va x V8, Va x V(, and V,.0p, V,(r are particular solutions of (2). They are
generated by the cyclic functions 8y, (yr € [0,1) x [0,1), which can be interpreted as
poloidal (helicoidal) and toroidal angles, satisfying equations

Lyby =LyCy =0, Ly=V- [vaPV\a(-), Lpbp = Lp(r =0, Lrp=V-V,(-). (5)

From this, it is seen that 6y r,(y,r) depend on the shape of magnetic surfaces only,
while each summand in the flux (contravariant) field representation or in the current
(covariant) representation (4) satisfies all the properties of (2). The relations between
the coefficients and basis vectors in (4), (5) can be written as

J =02V + an3®,  03Velr + 03Velr = —Va x V,(y, (6)
F = —ayV + a33<1>', a3V 0F + 033va§p‘ = Va x Va6¢.

Here matrix elements a(a) = ef - e',f /+/G% depend on the shape of magnetic surfaces
and volume V'(a) inside magnetic surfaces a = const only, for example,

V'(a)azs(a) = (VV x {y) - (VV x (r)/(VV - V8r x (F),

e; - contravariant basis vectors and ,/g - Jacobian of flux coordinate system (a,6,0).
Using other combinations of particular solutions of (2) a pair of mixed representations
(in terms of flux and current) of magnetic field is can obtained:

B =VU xbf +Fbj, B=V®xbf+Fb?, (7)

where, as before, each component satisfies equations (2). The vectors bg’f are tangential
to magnetic surfaces. They can be written as linear combinations of (Vaby,r, Valy.F),
for example,

o

by = Valr + aﬁvaeF =ey/(ef - ), bf = Va(y+ gz—svaew =ey/(ef -ef).  (8)
33

Hence for constructing the specific field B, which provides the plasma MHD equilib-
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rium configuration, it is sufficient to know only the shape of magnetic surfaces and the
distribution of any pair from fluxes and currents over these surfaces. Substitution of the
magnetic field (in any form) into the force-balance equation (3) yields the equation for
function a(r) and, hence, complements (4)-(8) to a close system of equations.

Such a method with B in the form (7) generates three-dimensional analog of the
two-dimensional Grad-Shafranov equilibrium equation

: by x V¥ dF
(bF x V x bf) - V¥ + (b xbg)-wg—g-+ (9)
b¥ x VI - ,b¥ x V¥ s dp
Fw)VX(b:; XV\I’)—F—TW—T-°VXb3—-~aE.

For axisymmetric systems the vectors bg ¥ do not depend on a shape of magnetic
surfaces and can be found in an explicit form: b = b;f = Vo.
The flux representation (4) leads to the equilibrium equations

V. (VA xB) = —gg, A=, + V¢, (10)

Equation (10) together with some modification of (4), (5) is, in fact, a base for existing
3D equilibria codes BETA [13], VMEC [3], POLAR-3D [14].
Using the representation of the current density in arbitrary flux coordinate system

j=VJIxVO+VF x(—-VvxVa

it is straightforward to obtain one dimensional zero moment of equilibrium equation (10)
— the Kruskal-Kulsrud equation

plvl - JIIP, . FI@/.

1.2 2D Grad-Shafranov type equation for 3D plasma equilibrium as the exact
zero two-dimensional moment for magnetohydrostatics The following statement
was formulated in [10, 11]:

Statement. For any 3D plasma equilibrium (with nested flux surfaces at least) there
exist coordinate system (z',z2, () and corresponding Riemannian space R? in which the

following conditions are satisfied: i. metric tensor g;x(r) is two-dimensional: B—Cgik = i0;

ii. poloidal (helicoidal) flux function ¥ is two-dimensional ¥ = ¥(z!, z?) and it is the
solution of 2D Grad-Shafranov type equation

V.(.V_E)J__@f:_v.(esxe):_adp )

J33 g33 d¥ 933 du’

iii. magnetic field takes the form B = (V¥ x e3 + Bses)/gs3, with e3 = 0r/0(, < B3 >¢=
F(0).
Here R? is generated by the metric tensor
Ge=vVE<ZE >, G=detgup=det <L > §* =Gu/d, (12)

Y V9

and

o= ofz!,a%) =< v/G >¢ V3,
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V is an V-operator in R®. In these formulas < f >c= E7 flat b, C)de,
For coordinate transformation in R® 2! — z? one can use general transition formulas

dz™ O™ = =D(z)
glk ngn 6$:‘; '5-:;]57 (\/E)* - \/ED((L'I)

Therefore, each coordinate system, connected with (z', z2, ) by 2D transformation z}? =
zt?(z',2%), (. = ¢ — Mz, 2°) generates the same R® . For such coordinate transfor-
mations the equation (11) is invariant and can be written in an explicit 2D form:

Lo ( Loy @ Fir, 10 (B 0 (3a))p
zk 16.’131 g33\/—61:k = d\I’ g33 dav \/— ozl _@33 sz 933 ’
(13)

Equation (11) or (13) can be obtained by averaging the exact 3D equilibrium equation
(9) if the reference coordinate system is chosen as following z'? = z'?(a,8y), (¢ =

Gy — Ala, by).

2 Averaged 3D equilibrium modelling An example of the application of the
method to the equilibrium and stability modelling of the LHD device and comparison
with other code results can be found in [15]. The background vacuum equilibrium for
the averaged 2D treatment was obtained there by the POLAR-3D code. Here another
possibility of the background configuration ehoice is explored — the approximate vacuum
equilibrium given by the scalar potentials of helically symmetric magnetic fields [16].
2.1 Vacuum equilibrium from analytic scalar potential The local polar coordinate
system (r, ¢,w) is introduced connected to the cylindrical coordinates (R, #, Z) by the
transformation

R=Ry+rcosw, Z=rsinw, ¢=¢, (14)

where R = R, is the circular stellarator axis. Then a flux coordinate system of the
vacuum magnetic field (p, u, ¢) can be found in the following form:

r=p+ipud), w=utipug), ¢=9, (15)

where for the small corrections 4, A the approximate expressions are valid:

S PN Y Y
et Bo 6,0 A= 2.Bo 6’!1, (16)

withh=1-— 7?-13 pcosu. The function ®,; = [ @,d¢ is the primitive function of the sum
of the scalar potentials of the helically symmetric vacuum fields with different helicity:

®,, = BoRop + &)st, o, = Z Boeim I ( > sin(lu — m¢), (17)

where By is the value of magnetic field at the stellarator axis, I; are modified Bessel
functions. In particular, for a single harmonic the (16) can be rewritten as

IRy .,

2
§ = h% —Il (R )cos(lu me), A= —h’e & R°
0

oy ( RO) sin(lu—mg).  (18)
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2.2 Numerical procedure The first step in the averaged 3D equilibrium modelling is
a choice of the background configuration. The vacuum magnetic field of the WVII-A
and Heliotron-E stellarator in the single helical magnetic field harmonic approximation
are described by the parameters [16]: Ro/pmae =20, =2, m=5 €= 0.43, and
Ro/pmaz =10, 1 =2, m =19, e=0.32, respectively. The magnetic surfaces were
constructed using (18).

At the second step the magnetic surface coordinates were used as an input to the
module which computes the "natural” flux coordinate system (4) solving a series of two-
dimensional equations (5) on magnetic surfaces and produces the coefficients oy (6)
which connect the fluxes and currents, and the averaged metric coefficients (12). For
the vacuum case (F = const, J = 0) the fluxes ¥ and & and the rotational transform
v = —W'/® profile as well as all magnetic field can be found using only the coordinates
of magnetic surfaces as input. »

Fig.1 and Fig.2 demonstrate |B|? level lines on magnetic surfaces and in the natural
flux coordinates reconstructed from the magnetic surface geometry for the WVII-A and

Z

the Heliotron-E cases. , %‘

1
0 1 2 3 4 5 6

Fig.1 |B|? level lines on the boundary magnetic surface and plasma cross section in real space
and in fluz coordinates 0y, (y for the WVII-A case. Dashed line shows the magnetic field line
slope.

theta
©
T

Fig.2 |B|? level lines on the boundary magnetic surface and plasma cross section in real space
and in flur coordinates 8y, (y for the Heliotron-E case. Dashed line shows the magnetic field
line slope.

The third step is a solution of the equation (13). The first natural test is a reproduc-
tion of the background equilibrium in the Riemannian space — the Grad-Shafranov type
of equation should satisfy if U(z!,z%) = ¥(a).
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Finally the the magnetic field in real space space should be reconstructed from the
solution of (13) and the coordinate transformation r = r(¥,6,, () given by harmonics
of the magnetic surface coordinates, for example.

3 Future work The averaged equilibrium treatment proposed in [9] on the base of
analytic vacuum magnetic field background configurations is under development. The
calculations of zero net current equilibria with finite 4 on the base of averaged equation
(13) and the reconstruction of the equilibrium magnetic field in real space would make
possible robust optimization of the stellarator equilibria varying the set of helical field
harmonics and plasma profiles.
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YCEPEJHEHMI ONKUC TPUBHUMIPHOI MI'Jl PIBHOBATH

C. 10. Mensenes, B. B. [poznos, A. A. Isanos,
A. A. Mapruuos, IO. FO. Ilomexonos, M. I. Muxaiinos

3aranbHui Miaxia 1o aBoBuMipHoro onucy MITJI piBHOBaru Ta CTiMKOCTI B TPMBHMIpPHHX CHCTEMaX
3anponoHoBato C. A. T'ankinum Ta in. y 1991 p. Meton Bumarae 3ajianns 6a30B0i TPHBUMIpHOT piBHOBArH i3
BK/IAJICHUMH MarHiTHUMH MIOBEPXHAMH JUIsi OTPUMaHHA MeTPHKU PiMaHOBOrO mpocTopy, B KoMy piBHOBara
OMHMCYEThCS JBOBUMIPHUM piBHAHHAM Tumy I'pena — llladpanoBa. Ocranne moke 6yTH po3B’s3aHMM
LUISIXOM Bapiauii npodifis Ta GpopMM MIa3Mu 3 METOIO OTPUMAHHS TPUOIH3HOT TPHBUMIPHOT piBHOBar. Y
paMKax METOQy MOXHA BHMBYATH fK TPAAMLIHHI TUIOCKOBICHI cTenapatopu, Tak i koH(irypauii i3
NPOCTOPOBMMHM MArHiTHUMH OCAMHM. Y Wil poGoTi posrasHyTo (OpMyIOBaHHA i YMCENbHE PO3B’SI3aHHS
3ajjayi PiBHOBAark JUIsl CTENapaTopiB i3 MIOCKOIO Biccio. ba3oBy piBHOBaXkHY KOH}Irypauiio i3 BKIafeHHMH
MAarHiTHUIMM [OBEPXHAMH OepeTbcs 3 BaKyyMHOrO MArHITHOTO TOJf, fAKe HAGNMKEHO ONHUCYEThCA
AHATITUYHUM CKAJIIPHUM MOTEHLIIAIOM.
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