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METRIC COEFFICIENTS FOR A STELLARATOR CONFIGURATION
Zh. N. Andrushchenko, Ya. I. Kolesnichenko, O. A. Silivra, Yu. V. Yakovenko

The metric coefficients are analytically calculated for a non-axisymmetric stellarator configuration
with a complex shape of the magnetic axis and the magnetic field varying along the axis. Calculations are
performed in a working coordinate system, which is a flux coordinate system with “straightened magnetic
field lines”, assuming that the magnetic axis is a closed spatial curve with given curvature and torsion. The
cross sections of the magnetic surfaces are approximated by ellipses with both elongation and orientation of
the main axes varying along the magnetic axis. Effects of triangularity and displacement of magnetic
surfaces with respect to the magnetic axis are included in the analysis. Transition from the working
coordinates to Boozer ones is carried out, and the metric coefficients are obtained in Boozer coordinates.

Introduction

Three-dimensional nature of the magnetic configuration of stellarators, especially when the
magnetic axis is non-planar, results in a complicated form of the flux surfaces. Therefore, generally
speaking, numerical calculations are required to determine the metric features of the system.
Nevertheless, making some simplifying assumptions one can treat the problem analytically. In this
work, we employ such an approach, assuming that the magnetic surfaces are a set of tori nested

around a single magnetic axis.
The usual way to describe stellarator configurations is using flux coordinates (a,6,¢ ), with

a being a label of a magnetic surface and &,¢ some angles on the surface a=const. An appropriate
choice of these angles depends on the problem under consideration.

So-called Boozer coordinates (a,68,,9,) [1] are most universal coordinates convenient for
both analytical and numerical calculations. In such coordinates the flux (contravariant)
representation of the equilibrium magnetic field is

2B =V¥xV@, - V¥ xVg,, (1a)

with W(a) being the toroidal magnetic flux and : the rotational transform. The current (covariant)
representation has the form:

228 = J(a)V 0, + F(a)V 05, (1b)

where J(a) and F(a) are the toroidal and poloidal currents, and V, =V -Va (VaV)/ lVa[2 is the
surface gradient [2]. The Jacobian of the transformation from Cartesian to Boozer coordinates is

5 Y'(F +4dJ)
\[g—— 4r’B* @

Here, following [2], we use notations slightly different from original Boozer ones.

Interest in analytical treatment of metric coefficients is accounted for by the fact that they
explicitly enter in many expressions if the curvilinear coordinates are used. For example, an
equation of shear Alfvén eigenmodes in optimized stellarators of the Wendelstein line was derived
in Ref. [3] in Boozer coordinates, using the ideal MHD approximation (the longitudinal component

of the perturbed electric field E” =0) and taking l~3" = 0. It has the form:

. V,®
LV-(VLL(I))+(02R§V-[ . j 0, 3)

=274
v.b
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where L=1 g 4 g - E=-V, o, '\7A=§/1/47[p, B =B/b,
00, Opy
b =1+Ze(’“’) cos(uf, —vNg,), p and v are integers, N is the number of the magnetic field
RY
periods, || <<1 are relative magnitudes of Fourier harmonics, and R, is the major radius of the

torus. This equation is three-dimensional, and the dependence on &,,¢, arises not only because of
Fourier harmonics of B but also from the metric tensor coefficients.

In Ref. [3] the structure of the shear Alfvén continuum was studied on the basis of Eq.(3).
However, the metric tensor coefficients were obtained in the mentioned work to the lowest order in
the distance from the magnetic axis. In order to obtain the full picture of the Alfvén continuum,
further work is required to find more exact expressions of tensor components, which is done in this

paper.
Model

For purposes of calculation we take as our initial coordinate system a system associated with
the magnetic axis of an equilibrium configuration, assuming that the magnetic axis is a closed three-
dimensional curve with given curvature k(@) and torsion x(¢). We denote s = Rp the arc length

along the axis, and we use R=L/27, where L is the length of the magnetic axis. In the plane
s = const we introduce orthogonal coordinates (x,y), x = pcosw, y = psinw, @ =y + 3, where
p is the distance from the magnetic axis to the magnetic surface, y is the angle read off from the
main normal to the magnetic axis. The coordinates (x,y) rotate around the magnetic axis. The
square of an element of length in the coordinate system may be written in the form [4]:

dl* = dv* +dy? +29 (ydx - xdy)dp +(R*h2 + (x* + )9 Mo?, 4)

where 3 =8~ &R, h, =1—(kxcosd + kysin &), primes mean derivatives with respect to ¢ .
As a zero approximation we take the “rounded” coordinate ‘system ( p,®,¢ ) [5], with the

cross-sections of the magnetic surfaces being approximated by ellipses. The ellipticity parameter
2 2

a; —a . . . ;

é(p) =tanhn(p) (6 =———>, a,, being the main semi-axes of the ellipse) and the angle
1 T4 '

between the ellipse minor axis and the magnetic axis principal normal & ¢) arbitrarily change along

the system axis. Moreover, both the variation of the magnetic field along the axis, considered as

given, and displacements of magnetic surfaces with respect to the magnetic axis are taken into

account:

1 1
x=——=e"*(pcosw+ p&), y=—=e"*(psinw+ p2&,). 5
. PG NS (p P°S,) 5)

Here the function b,(¢) = B,(9)/B,,. Characterizes the field distribution on the axis; & and &,

are the displacements of the magnetic surface.
As the next step we take a flux coordinate system (a,8, ¢ ) with “straightened magnetic field

lines” and include the effect of triangularity of magnetic surfaces with respect to the magnetic axis
in the analysis:

a’ =p*+2(acos3w + Bsin3w)p°,

. 6
w =0 +a(4, sin@ + cos@ + A, sin 36 + 11, cos 30). )
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Below we will refer to this coordinate system as the working one.
The parameters @, # introduced here determine completely, for a given &, the shape of the
cross section of a particular magnetic surface. The parameters A, u,,4,, 1, are the rectification

parameters to be determined. Substituting Eqs.(5)-(6) into Eq.(4), we find:

cosde™?, u, =2, +—k—sin&"’2, A=a, H,=-p. (7

k
b2 i

Note that the parameters A,,x, coincide with those calculated in [5], whereas A, x, explicitly
depend also on the magnetic field distribution on the axis.

Metric coefficients in the working coordinates (a,6,¢)

Substituting Egs.(5)-(7) into Eq.(4), we can calculate the metric coefficients of the working
coordinate system, keeping only the leading term and the first-order correction to it:

g, =g\ +agfy, (8)

gl = El-_ (cosh 77 — sinh 77 cos 28), -
0

11 3/2
by

sinh 77[(— cos @ + cos30)cos e ™"'? + (sin @ + sin 30)sin Se”'? ]+

i bi[cosa((a & )sinh gy +&e )+sin6((B + &, )sinh g + &,e” )+

+c0s36(— a cosh 77 + &, sinh 1)+ sin 30(- B cosh 7 + &, sinh )k

— 2, (0) 3.0
8y =078y TA 8y, 9)

g = Zl- (cosh 77 + sinh 77 cos 26),
0
(1 - 2k

22 3/2
by

[(cos 6 cosh 77 + cos 30 sinh 7)cos e "'* +(sin 6 cosh 77 + sin 30 sinh n)sin de""? ]+

+ bi [cos O(a sinh 77 — &, cosh77)+ sin @(Bsinh 7 — &£, cosh ) +
0

+cos 30(c cosh 7 — & sinh 1)+ sin 36(B cosh 7 — &, sinh 7))

g, =8, =agh +a’gy, (10)

g = Zl—sinh nsin 26,

0

a _ k
g = 3/2
by

[(sin @e™" + 2sin 3@ sinh n)cos de'? (cos&e" + 2cos 3@ sinh n)sin &”/2]+

+ il [cos 0(§2e" )— sin 6(§1e"’ )+cos 36(~ S cosh + &, sinh 1)+ sin 30(a cosh 77 — &, sinh 7))

0
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For further calculations only the leading terms of the metric coefficients g,; = g3, &,; = &3, are

important:
g =agys +a’gy, (11)
! bl
i) = 7_(sinh# - cosh7 cos 26) - —2(coshn — sinh 77cos 26),
20, 25
gn=a'gy +a’gy, (12)

(©) =—i cosh 77sin 260) - by sinh sin 26 —i’.
£ =2 eoshsin2e) - 2 inhsin20)

0

It should be mentioned that the leading terms of the metric coefficients presented above are mainly
determined by the shape of the magnetic surfaces (varying elongation of the surface cross sections)

and the variation of the magnetic field along the axis; only g7 explicitly contains dependence on
the torsion of the magnetic axis and rotation of ellipse. However, first-order corrections to the
metric coefficients involve the curvature of the magnetic axis, the rotation of the ellipse, and the
triangularity and displacements of magnetic surfaces.

— -

gy, =R’ 1—z—lal(cosecosé‘e“’”2 +sin95in5e"’2) : (13)

" _

=

JE:%{{— l—jlg_a(cosﬁcosée"’/z+sin03in§e"/2). (14)
0 0

It should be mentioned that the obtained metric coefficients in the special case of a uniform
configuration (b, =1) are reduced to the coefficients calculated in [5].

Transition to Boozer coordinates (a,0,,¢;,)

In the working coordinate system (a,6,¢ ) with “straightened magnetic field lines”, the flux
representation is

2B =V¥ xVO-1V¥x Vo, (15a)
whereas the current representation of the equilibrium magnetic field takes the form:
2B =J(a)V 0+ F(a)V,p+V 9, (15b)

where ¢(a,0,¢) is some unknown function which is periodic in & and ¢, and all other notations
are the same as in Egs.(1).

As Boozer coordinates are a special case of flux coordinates with “straightened magnetic
field lines”, transition from the working coordinates to Boozer ones can be found, following [2,6]:

9, Pp =@ 9, (16)

PO S B —
F+id F+ud

where ¢ should be found with the use of the condition V-B, =0 and Eq.(15b) by solving the
differential equation:
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divV ,¢ = —JdivV 0 — FdivV . (17)
We seek a solution of Eq.(17) in the form
#(a.0,9) = ¢,(p) + ¢(a.6,9). (18)

Substituting into Eq.(17) the expressions for metric coefficients g, and applying periodicity
conditions to ¢, we find:

¢ l 2z
¢0=F6[(<ZZ>—1Jd¢, <b0>=g6{b0d(p. (19a)

In a uniform configuration (b, =1), ¢, vanishes, and ¢, (a,0,¢), which is given by the equation

a’ (by) 2(b,)coshn

becomes the dominant term. In any case, ¢ (a,6,9) gives the correction of the second order in

expansion over the distance from the magnetic axis and can be neglected in the framework of our
approximation. Knowing the expressions for the function ¢, we can now find expressions for

2 2 ' !
é¢—‘—_—%7{800329[JR—+Fi]+Fsin2(9——n——-—], (19b)

Boozer coordinates (a,6,,9, ). Following [2,6], tragsition from the working coordinates to Boozer
ones is carried out as follows:

A b “ b
0, =0+1|| —-14do, ¢B:¢+f( 2 —le(p. (20)
’ Jf(’?o) ]d o {bo)

Usually the variation of the magnetic field along the axis does not exceed few percents; therefore,
the working coordinates with good accuracy coincide with the Boozer ones. Such a transition from
the working coordinates to the Boozer ones does not change seriously the expressions for metric
coefficients:

8181 =& gfz = 8> ngz = & (21a)

however,

1 1 1 1
ngsz—D'gm gg:"D“(gn'*'lgzz(l—D))a ggz‘l')'g_gss’ \/g—BZB\/_a (21b)

with D being the Jacobian of the transformation from the working coordinates to the Boozer ones:

0(0,.0,) b,
D= S
20,9)  (b)

(22)

The metric coefficients derived were found to be in agreement with numerically calculated
coefficients for the partially optimized stellarator Wendelstein 7-AS (W7-AS).

Note that the leading terms of metric coefficients given by expressions (21) coincide with
the metric tensor coefficients calculated in [3] to the lowest order in the distance from the magnetic
axis.
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Conclusions

In this work, a non-axisymmetric stellarator configuration with a complex shape of the
magnetic axis is investigated analytically, using the Boozer representation of the equilibrium
magnetic field. Calculations are performed in a working coordinate system, assuming that the
magnetic axis is a closed spatial curve with given curvature and torsion. The variation of the
magnetic field along the axis is taken into account and also considered as given. The metric
coefficients are calculated through expansion in powers of the distance from the magnetic axis.

Transition from the working coordinates to Boozer ones is carried out. It is shown that
coordinate systems with good accuracy coincide one with another. However, the transition from the
working coordinates to the Boozer ones slightly changes the expressions for some of metric
coefficients. Preliminary analysis shows that the derived metric coefficients agree with numerically
calculated ones for the partially optimized stellarator W7-AS.
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METPUYHI KOE®IIIEHTH IJIS1 TOBLUILHOI CTEJJAPATOPHOI KOH®II'YPALU
K. M. Arapymenxo, 1. I. Korecanuenxo, O. O. Cinispa, FO. B. SIxoBenko

AHAIITHYHO pPO3PaxOBaHO METPHYHI KOe(DIliEHTH I HEOCEeCHMMETPHYHOI CTeNapaTopHOi
KoH(pirypaiii 3i cknanHoo GopMOrO MarHiTHOT Oci Ta Bapialli€lo MArHITHOIO MOJIs B3JOBXK Hei. PospaxyHku
BMKOHAaHO B po0Oouifi cHCTEMi KOOpAMHAT 3 “BHNPSIMIEHHMH CHIOBHMHM JIiHiSIMM MArHITHOrO mMos”,
BB&XXAKOYH, U0 MarHiTHa BiCh ABJIA€ CO60I0 3aMKHEHY NPOCTOPOBY KPHBY, KA XapaKTePH3YEThCs 3aJaHMMH
KPUBMHOIO 1 KpyTiHHAM. Ilonepeuni nmepepisy MATHITHHX NOBEPXOHb allPOKCHMOBAHO €JIIIICAaMH, IIPHUOMY
BUTSATHYTICTh 1 OPi€HTALlisl TOJIOBHMX OCeH elinciB 3MiHIOIOTHCA B3IOBX MarHiTHoi oci. Kpim Toro, B Moaens
BKJIFOYEHO TPUKYTHICTb Ta 3MilllEHHs MarHiTHHUX MOBEPXOHb BiIHOCHO MArHiTHOI oci. 3po6eHo nepexia Biz
po6ourx KoopAMHAT 10 KoopauHaT By3epa Ta mopaxoBaHo MeTpHuHi koediuienTu B koopauHaTax bysepa.
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