OPTIMISATION OF THE PARTICLES CONFINEMENT IN STELLARATOR WITH HELICAL DIRECTION OF LINES *B*=CONST

A. A. Subbotin ¹, J. Nührenberg ², M I. Mikhailov ¹, W. A. Cooper ³, M. Yu. Isaev ¹, M. F. Heyn ⁴, V. N. Kalyuzhnyj ⁵, S. V. Kasilov ⁵, W. Kernbichler ⁴, V. V. Nemov ⁵, V. D. Shafranov ¹

¹ Russian Research Centre "Kurchatov Institute", Moscow, Russia
² Max-Planck-Institut für Plasmaphysik, IPP-EURATOM, Greifswald, Germany
³ Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland
⁴ Institut für Theoretische Physik, Graz, Austria
⁵ Institute of Plasma Physics, National Scientific Center "Kharkov Institute of Physics and Technology",
Kharkov, Ukraine

Collisionless particle confinement in stellarator configurations with helical direction of the lines B=const on the magnetic surfaces is investigated numerically for a six-period system. The optimisation is performed with different penalty functions that are connected with the pseudosymmetry condition and the condition that the second adiabatic invariant $J_{||}$ forms closed contours. In addition, the effect of β on the particle confinement is studied.