THE α -PARTICLES CONFINEMENT IN ZERO AND FINITE β MIRROR-TYPE STELLARATORS

M. I. Mikhailov¹, M. Yu. Isaev¹, J. Nührenberg², A. A. Subbotin¹, W. A. Cooper³, M. F. Heyn⁴, V. N. Kalyuzhnyj⁵, S. V. Kasilov⁵, W. Kernbichler⁴, V. V. Nemov⁵, M. A. Samitov⁶, V. D. Shafranov¹

 ¹ Russian Research Centre "Kurchatov Institute", Moscow, Russia
² Max-Planck-Institut für Plasmaphysik, IPP-EURATOM, Greifswald, Germany
³ Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland
⁴ Institut für Theoretische Physik, Graz, Austria
⁵ Institute of Plasma Physics, National Scientific Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine
⁶ Moscow State Engineering and Physics Institute, Moscow, Russia

Helical magnetic systems with poloidal direction of the lines B = constant on the magnetic surfaces are investigated to clarify in more detail the connection between the shape of the magnetic surfaces and the topology of the B = constant surfaces on the one hand and particle confinement on the other. The possibilities to fulfil the pseudosymmetry condition as well as the condition that the second adiabatic invariant $J_{||}$ forms closed contours are investigated numerically for almost zero and finite β values.