Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2001, volume 2, issue 3, pages 30-35.
Section: Nuclear Physics.
Received: 12.03.2001; Published online: 30.09.2001.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2001.03.030

Total break-up of the alpha-particle after the collision with a nucleon

G. F. Filippov1, A. M. Sytcheva2, S. V. Korennov1,3, K. Kato3

1Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kyiv Taras Shevchenko National University, Kyiv, Ukraine
3Hokkaido University, Sapporo, Hokkaido, Japan

Abstract: In the framework of molecular dynamics, neutron scattering on α-target was considered. Trial wavefunction was chosen in a way that allowed to treat complete break-up of α-particle. Dependencies of the energy, transmitted to α-particle after the collision, on the energy and impact parameter of incident particle were obtained. The total cross-section of complete disintegration of α-particle and the reaction time were estimated.

References:

1. Feldmeier H. Fermionic Molecular Dynamics. Nucl. Phys. A 515 (1990) 147. https://doi.org/10.1016/0375-9474(90)90328-J

2. Филиппов Г. Ф. Классические уравнения дыхательной моды магических ядер. Ядерная физика 58 (1995) 1963.

3. Ono A., Horiuchi H., Maruyama T., Onishi A. Antisymmetrized Version of Molecular Dynamics with Two-Nucleon Collisions and Its Application to Heavy Ion Reactions. Prog. Theor. Phys. 87 (1992) 1185. https://doi.org/10.1143/PTP.87.1185

4. Brink D. M. The Alpha-particle Model of Light Nuclei. Int. School of Physics "E. Fermi" (New York: Acad. Press, 1965) Course 36, p. 247.

5. Danilin B. V., Thomson I. J., Zhukov M. V. Electromagnetic dipole response of 11Li in a solvable three-body model. Phys. Lett. B 333 (1994) 299. https://doi.org/10.1016/0370-2693(94)90145-7

6. Kramer P., Sarancero M. Geometry of the Time-Dependent Variational Principle in Quantum Mechanics. Lecture Notes in Physics, Vol. 140 (New York: Springer-Verlag, 1981). https://doi.org/10.1007/3-540-10579-4