Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2001, volume 2, issue 1, pages 42-51.
Section: Nuclear Physics.
Published online: 30.03.2001.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2001.01.042

Properties of the ground states of spherical atomic nuclei in the frameworks of the extended Thomas – Fermi method

V. Yu. Denisov, V. A. Nesterov

Institute for Nuclear Research of the National Academy of Sciences of Ukraine

Abstract: The characteristics of the ground states of spherical nuclei has been studied in the frameworks of the extended Tomas-Fermi method. It has been shown that binding energy, root-meansquare radii and nucleon densities for the β-stable nuclei are in a good agreement with the experimental results. The binding energy, root-meansquare radii and nucleon densities for the nuclei far from the β-stability line has been calculated as well as for superheavy nuclei. The thickness of the diffusion area for proton, neutron and nucleon density distribution have been calculated also.

References:

1. Skyrme T. H. R. Nucl. Phys. 9 (1959) 635.

2. Vatherin D., Brink D. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

3. Beiner M., Flocard H., Giai N. V., Quentin P. Nucl. Phys. A 238 (1975) 29. https://doi.org/10.1016/0375-9474(75)90338-3

4. Nguyen Van Giai, Sagawa N. Nuch. Phys. A 371 (1980) 1. https://doi.org/10.1016/0375-9474(81)90741-7

5. Bartel J., Quentin P., Brack M. et al. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1

6. Dobaczewski J., Flocard H., Treiner J. Nucl. Phys. A 422 (1984) 103. https://doi.org/10.1016/0375-9474(84)90433-0

7. Tondeur F., Brack M., Farine M., Pearson J. M. Nucl. Phys. A 420 (1984) 297. https://doi.org/10.1016/0375-9474(84)90444-5

8. Chabanat E. Interactions efffectives pour des conditions extremes d'isospin, Univ. Claude Bernard Lyon-1, Thesisi 1995, LYCEN T 9501, unpublished.

9. Барц Б. И., Болотин Ю. Л., Инопин Е. В., Гончар В. Ю. Метод Хартри-Фока в теории ядра (Київ, 1982).

10. Reinhard P. -G., Dean D. J., Nazarewicz W. et al. Nucl. Phys. 60 (1999) 564. (LANL- Preprint nucl-th/9903037).

11. Мигдал А. Б. Теория конечных ферми-систем и свойства атомных ядер (Москва: Наука, 1983).

12. Саперштейн Э. Е., Ходель В. А. Изв. Акад. наук СССР. Сер. физ. 47 (1983) 907.

13. Brack M., Guet C., Hakanson H. -B. Physics Reports 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5

14. Brack M., Bhaduri R. K. Semiclassical Physics (Addison-Wesley, 1997).

15. Brack M. Rev. Mod. Phys. 65 (1993) 677. https://doi.org/10.1103/RevModPhys.65.677

16. Коломиец В. М. Приближение локальной плотности в атомной и ядерной физике (Київ: Наук, думка, 1990).

17. Oganessian Yu. Ts. et al. Phys. Rev. Lett. 83 (1999) 3154; https://doi.org/10.1103/PhysRevLett.83.3154

Ninov V. et al. Phys. Rev. Lett. 83 (1999) 1104. https://doi.org/10.1103/PhysRevLett.83.1104

18. Münzenberg G. Rep. Prog. Phys. 51 (1988) 57; https://doi.org/10.1088/0034-4885/51/1/002

Hofmann S. Rep. Prog. Phys. 61 (1998) 639; https://doi.org/10.1088/0034-4885/61/6/002

Flerov G. N., Zvara I., Ter-Akopyan G. M. et al. Sov. J. Part. Nucl. 22 (1991) 453.

19. Hohenberg P., Kohn W. Phys. Rev. 136 (1964) B864. https://doi.org/10.1103/PhysRev.136.B864

20. Liviu Gr. Iharu. Numerical Methods for Differential Equations and Applications (Editura Academiei, Bucuresti, Romania, 1984).

21. Strutinsky V. M. Nucl. Phys. A 95 (1967) 420; https://doi.org/10.1016/0375-9474(67)90510-6

Strutinsky V. M. Nucl. Phys. A 122 (1968) 1; https://doi.org/10.1016/0375-9474(68)90699-4

Fink B., Mosel U. Memorandum Hessincher Kernphysicer (Darmstadt-Frankfurt-Marburg, 1966 [1, 10.4]);

Mosel U., Greiner W. Z. Phys. 222 (1969) 261; https://doi.org/10.1007/BF01392125

Mosel U., Greiner W. Z. Phys. 217 (1968) 256; https://doi.org/10.1007/BF01394101

Nilsson S. G. et al. Nucl. Phys. A 115 (1969) 545;

Nilsson S. G. et al. Nucl. Phys. A 131 (1969) 1. https://doi.org/10.1016/0375-9474(69)90809-4

22. Smolanczuk R., Skalski J., Sobiczewski A. Phys. Rev. С 52 (1995) 1871; https://doi.org/10.1103/PhysRevC.52.1871

Smolanczuk R. Phys. Rev. С 56 (1977) 812. https://doi.org/10.1103/PhysRevC.56.812

23. Audi G., Bersillon O., Blachot J. et al. Nucl. Phys. A 624 (1997) 1. https://doi.org/10.1016/S0375-9474(97)00482-X

24. Chartier M. et al. Phys. Rev. Lett. 77 (1996) 2400. https://doi.org/10.1103/PhysRevLett.77.2400

25. Brown B. A. Phys. Rev. 58 (1998) 220. https://doi.org/10.1103/PhysRevC.58.220

26. De Vries H., De Jager C. W., De Vries C. At. Data Nucl. Data Tabl. 36 (1987) 495. https://doi.org/10.1016/0092-640X(87)90013-1

27. Andersson G., Larsson S. E., Leander G. et al. Phys. Lett. B 65 (1976) 209. https://doi.org/10.1016/0370-2693(76)90164-7

28. Dudek J. Acta Physica Polonica B 9 (1978) 919.

29. Audi G., Wapstra A. H. Nucl. Phys. A 595 (1995) 409. https://doi.org/10.1016/0375-9474(95)00445-9

30. News (October 1, 1999). http://physicsweb.org

31. Myers W. D., Swiatecki W. J. Phys. Rev. С 58 (1998) 3368; https://doi.org/10.1103/PhysRevC.58.3368

Phys. Rev. С 60 (1999) 054313. https://doi.org/10.1103/PhysRevC.60.054313