Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2000, volume 1, issue 2, pages 114-122.
Section: Radiation Physics.
Published online: 30.12.2000.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2000.02.114

Some radiation effects in quantum-size À3Â5 and À2Â6 structures, grown on semiinsulating GaAs

Ye. Yu. Braylovsky, G. N. Semenova, Yu. G. Sadofyev, N. Ye. Êorsunskaya, Ì. P. Semtsiv, Ì. B. Sharibaev

Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The effect of electron (Å=1.8 ÌåV), 60Ñî γ-quanta and X-ray irradiation (Å≤100 êåV) on the photoluminescence, PL, and optical reflection of the GaAs/GaAlAs ³ CdZnTe/ZnTe quantum-size structures was investigated. The quantum wells, QWs, of the À3Â5 structures were grown by the ÌÎÑVD-technique, the QWs of the À2Â6 structures were grown by the ÌBE method on the semiinsulating, SI, GaAs substrates. The high radiation hardness of A3B5 QWs after irradiation up to dose of 2·109 rad was found, while SI GaAs substrates manifested characteristics degradation under such irradiation dose. À2Â6 QWs tends to degrade under sufficiently lower irradiation dose. The well profile change was calculated from PL peak energy shift. The role of Ñd diffusion and internal strain in radiation enhanced quantum-size structures degradation is discussed.

References:

1. Èâàíîâ Ñ. Â., Òîðîïîâ À. À., Ñîðîêèí Ñ. Â. è äð. Ìîëåêóëÿðíî-ïó÷êîâàÿ ýïèòàêñèÿ ïåðåìåííî-íàïðÿæåííûõ ìíîãîñëîéíûõ ãåòåðîñòðóêòóð äëÿ ñèíå-çåëåíûõ ëàçåðîâ íà îñíîâå ZnSe. Ôèçèêà è òåõíèêà ïîëóïðîâîäíèêîâ 32 (1998) 1272.

2. Áàñîâ Ì. Ã., Äèàíîâ Å. Ì., Êîçëîâñêèé Â. È. è äð. Ëàçåðíàÿ ýëåêòðîííî-ëó÷åâàÿ òðóáêà íà îñíîâå ñâåðõðåøåòêè ZnCdSe/ZnSe, ðàáîòàþùàÿ ïðè Ò = 300 Ê. Êâàíòîâàÿ ýëåêòðîíèêà 22 (1995) 756.

3. Êîçëîâñêèé Â. È., Êðûñà À. Â., Ñàäîôüåâ Þ. Ã. è äð. Ýïèòàêñèàëüíûå ñëîè ZnTe è êâàíòîâûå ÿìû CdZnTe/ZnTå, âûðàùåííûå ìîëåêóëÿðíî-ïó÷êîâîé ýïèòàêñèåé íà ïîäëîæêàõ GaAs (100) ñ èñïîëüçîâàíèåì òâåðäîôàçíîé êðèñòàëëèçàöèè çàòðàâî÷íîãî àìîðôíîãî ñëîÿ ZnTe. Ôèçèêà è òåõíèêà ïîëóïðîâîäíèêîâ 33 (1999) 810.

4. Ðàäèàöèîííàÿ äîçèìåòðèÿ: Ýëåêòðîííûå ïó÷êè ñ ýíåðãèÿìè îò 1 äî 50 ÌýÂ. Äîêë. 35 ÌÊÐÅ: Ïåð. ñ àíãë. (Ìîñêâà: Ýíåðãîàòîìèçäàò, 1988) 280 c.

5. Áàêóøåâ Â. À., Âåò÷èíêèí È. Â., Âëàäèìðîâ Ë. Â. Ðåíòãåíòåõíèêà (Ìîñêâà: Ìàøèíîñòðîåíèå, 1980) 431 c.

6. Pons D., Bourgoin J. C. Irradiation-induced defects in GaAs. J. Phys. C: Sol. State Phys. 18 (1985) 3839. https://doi.org/10.1088/0022-3719/18/20/012

7. Hsu J. K., Jones S. H., Lau K. M. A new analytical technique of photoluminescence for optimization of organometallic chemical vapor deposition. J. Appl. Phys. 60 (1994) 3781. https://doi.org/10.1063/1.337543

8. Pavesi L., Guzzi M. Photoluminescence of Al GaAs alloys. J. Appl. Phys. 75 (1994) 4779. https://doi.org/10.1063/1.355769

9. Ãëèí÷óê Ê. Ä., Ãóðîøåâ Â. È., Ïðîõîðîâè÷ À. Â. Èñïîëüçîâàíèå ôîòî- è êàòîäî-ëþìèíåñöåíöèè äëÿ èçó÷åíèÿ ôèçè÷åñêèõ ñâîéñòâ ïîëóèçîëèðóþùèõ íåëåãèðîâàííûõ êðèñòàëëîâ àðñåíèäà ãàëëèÿ ñ öåëüþ ñîçäàíèÿ íà èõ îñíîâå èíòåãðàëüíûõ ñõåì (îáçîð). Îïòîýëåêòðîíèêà è ïîëóïðîâîäíèêîâàÿ òåõíèêà 24 (1992) 66.

10. Ãàâðèëåíêî Â. È., Ãðåõîâ À. Ì., Êîðáóòÿê Ä. Â., Ëèòîâ÷åíêî Ã. Â. Îïòè÷åñêèå ñâîéñòâà ïîëóïðîâîäíèêîâ (Êè¿â: Íàóê. äóìêà, 1987) 607 c.

11. Áàãàåâ Â. Ñ., Çàéöåâ Â. Â., Êàëèíèí Â. Â. è äð. Ýêñèòîííàÿ ëþìèíåñöåíöèÿ è ðåçîíàíñíîå ÊÐ ñóáìîíîñëîåâ CdTe â ïëåíêàõ ZnTe, ïîëó÷åííûõ ìåòîäîì ìîëåêóëÿðíî-ëó÷åâîé ýïèòàêñèè. Ïèñüìà â ÆÝÒÔ 58 (1993) 82.

12. Dessus J. L., Dang Le. Si., Nahmani A. et. al. Zeeman spectroscopy of exciton bound to trigonal acceptor center in ZnTe. Sol. Stat. Com. 37 (1981) 689. https://doi.org/10.1016/0038-1098(81)91079-6

13. Wagner Í. Ð., Kuhn W., Gebhardt W. Photoluminescence properties of MOVPE grown ZnTe layers on (100) GaAs and (100) GaSb. J. Cryst. Growth 101 (1990) 199. https://doi.org/10.1016/0022-0248(90)90965-N

14. Âåíãåð Å. Ô., Ñàäîôüåâ Þ. Ã., Ñåìåíîâà Ã. Í. è äð. Èçëó÷åíèå, ñâÿçàííîå ñ ïðîòÿæåííûìè äåôåêòàìè â ýïèòàêñèàëüíûõ ñëîÿõ ZnTe/GaAs è ìíîãîñëîéíûõ ñòðóêòóðàõ. Ôèçèêà è òåõíèêà ïîëóïðîâîäíèêîâ 34 (2000) 13.

15. Toda A., Nakano K., Ishibashi A. Cathodoluminescence study of degradation in ZnSe-based semiconductor laser diodes. Appl. Phys. Lett. 73 (1998) 1523. https://doi.org/10.1063/1.122193

16. Frijlink P. M., Maluenda J. MOVPE growth of GaAlAs-GaAs quantum well heterostructures. J. Appl. Phys. 21 (1982) L574. https://doi.org/10.1143/JJAP.21.L574

17. Venger E. F., Semenova G, N., Braylovsky E. Yu. et al. The effect of irradiation on the quantum-size layers properties, grown on semiinsulating GaAs. SPIE Proceed. (2000) in press.

18. Seto S., Tanaka A., Takeda F., Matsuura K. Defect-induced emission in CdTe. J. Cryst. Growth 138 (1994) 346. https://doi.org/10.1016/0022-0248(94)90831-1

19. Venger E. F., Sadof'ev Yu. G., Semenova G. N. et. al. Lateral and depth inhomogeneities in Zn-based heterostructures grown on GaAs by MBE. Thin Solid Films 367 (2000) 184. https://doi.org/10.1016/S0040-6090(00)00686-6