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NONLINEAR EVOLUTION OF 3D DRIFT-ION-SOUND STANDING WAVES
V.B. Taranov

Drift-ion-sound standing waves are considered in a magnetized inhomogeneous plasma. Effects of
three dimensionality, dispersion and vortex nonlinearity are taken into account. Perturbation theory solution
is obtained by the multiple-time-scale formalism. It is shown that no secular terms are present up to the
second order in amplitude and that second order corrections are homogeneous in the drift direction.

1. Introduction

Drift vortex structures play an important role in transport processes in plasmas. Detailed
investigation of their stability must include an account of their connection with ion-sound waves, so
the problem becomes three-dimensional [1]. General properties of the model [1] were studied in [2],
stability analysis on the basis of this model was done in [3], but linear drift dispersion effects were
neglected. The incorrectness of the neglect of the linear dispersion effects in the investigations of
the stability of vortex structures of any amplitude was emphasized in [4].

In the present work the temporal evolution of spatially periodic 3D standing waves is
studied. All physical effects contained in the model [1] are taken into account, namely the vortex
nonlinearity and dispersion effects due to the emission of coupled drift and ion-sound waves. The
model is shortly reviewed in the Section 2. For the waves of small but finite amplitude the
perturbation theory based on multiple-time-scale formalism is built and second order solutions are
found for the standing waves in the Section 3. Conclusions are made in the Section 4.

2. Model

Let us consider the inhomogeneous plasma slab in the external homogeneous magnetic field.

Electrons, but no ions, are magnetized, smoothing an electrostatic potential ® along the magnetic
field lines. In this case 3D generalization [1, 2] of the Hasegawa-Mima model equations holds:

OY/Bt + J(D,F) = dD/dy - 0v/oz:
ov/ot + J(D,v) = - 0D/oz; (1)
W=d-A, D

where v is velocity component along the magnetic field direction Oz, ¥ is only nonzero z-
component of vorticity, J(F,G) = 6F/0x-6G/dy - 6G/0x-6F/dy is the Jacobian nonlinear operator and
A, = &Y/0x* + 216y, The system (1) is written in dimensionless variables

sogt, X/1g, Y/t, €2/1g, eD/TE,

where ion cyclotron frequency g = eB/Mc and ion sound speed ¢s = (TB/M)U2 determine
characteristic dispersion length rg = ¢;/ wg , L is the characterictic inhomogeneity length of plasma
density and the small parameter € is equal to the ratio rg / L.

For perturbations proportional to exp(- iot + ik;x + ikyy + iksz), we obtain two modes
describing coupled drift waves and ion-acoustic ones:

0=05(-k (k> +4(1+k>+HA) kD W1 +k>+k1). (2)
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Note that due to the very particular character of the vortex nonlinearity J(F,G) single
monochromatic waves obeying this dispersion relation, but no sums of such waves, satisfy the
nonlinear system (1). If we choose a finite sum of linear waves as an initial condition, we can built
up the perturbation theory for waves of small but finite amplitude «, as it was done in [4] in the 2D
case, by the use of multiple-time-scale formalism.

3. Perturbation theory

Let us consider the waves of small but finite amplitude o and use the parameter o to build
the perturbation theory:

oot =0l8ty+ adlot; + ..., ta=a't
P(t, 1) = o (Polto, tr, ta, .. 1) + o0 Wi(te, 1, ta .l 1) + 000
d(t, r) = o (Po(to, t1, ta, ...l 1) + o0 Dilto, 11, b, ...l 1) + ..
v (t, r) = o (vo(to, t1, ta, - r) + o vi(to, ty, ta, o )+ ...

Now we choose an initial condition as a standing wave which corresponds in two-
dimensional case (k3 -> 0) to the monochromatic standing wave (exact solution in 2D case):

@ = o sin(k;x) sin(koy) cos(ksz), W= (1+k;*+k) @;
v =~ o f(k) sin(k;x) cos(kay) sin(ksz).
By the multiple-time-scale formalism we obtain the solution
@ =a sink;x) sin(kyy + ot) cos(ksz) +
+ o g(k) sin(2k,x) cos(2k;z) (1 - cos(mat)) + O(a3);
¥ = o (1+k; > +ky?) sin(k;x) sin(kay + ot) cos(ksz) +
+a? g(k) (1 + (2k;)?) sin(2k;x) cos(2ksz) (1 - cos(wat)) + O(0); (3)
v = - o f{k) sin(k;x) cos(kyy + o1t) sin(ksz) ~
- a? g(k) (1 + 2k)H'"? sin(2k;x) sin(2ksz) sin(wat) + O(d).
where frequencies are equal to
o1 = (ka + (ko +4 ks’ (14 *+ko?)') / 2 (I+k*4K), @p =2ks/ (1 + (2ki)D)™,
and factors f(k) and g(k) are determined by
f(K) = ks/wy, g(k) =k; ky / 8oy.

Higher harmonics generation and no resonant terms appear in this approximation. Full
nontrivial temporal evolution of the 3D standing wave (3) is determined by the coupling of drift
waves to the ion-sound ones.
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4, Conclusions

The temporal evolution of spatially periodic 3D drift-ion-sound standing waves was studied.
All physical effects contained in the model [1] were taken into account, namely the additional
vortex nonlinearity and dispersion effects connected to the coupling of drift and ion-sound waves.
For the waves of small but finite amplitude the perturbation theory based on multiple-time-scale
formalism was built. The solution obtained in this way for the 3D standing wave (3) shows that no
resonant terms are present and nonlinear corrections are homogeneous in the drift direction, all that
up to the second order in amplitude and for any values of the wave vector k. On the other hand, no
signs of instability appear in this approximation.
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_’HEJIII-III‘;{HA EBOJIONISA TPUBNMIPHUX
APEN®OBO-IOHHO3BYKOBUX CTOSAYUX XBUIb

B.b. Tapanos

Posrnsnyto apei(oBo-i0HHO3BYKOBI CTOSMI XBHWII Yy MarHeTH3oBaHili HeoAHOpiaHiH IU1azMi.
Bpaxosano TpuBMMiphi edektn nucnepeil Ta BUXpOBO! HeJliHIHHOCTI. 3a A0TIOMOrow Teopii 36ypeHsb, 110
Gasyersed Ha GaraTouacoBomy hopmanismi, ogepikaHo pose’s3ku piBHaHe Moaeni. ITokasaHo, o B Apyromy
TOPS/IKY M0 aMIUTITY/li CeKYNAPHI 10 1aHKH BiACYTHI, a 36ypeHHs € OAHOPIAHUME B ApelOoBOMY HAMPAMKY.

H:ilJIIﬂ-lEfIHAH IBOIOLUA TPEXMEPHBIX
APEHU®OBO-HOHHO3BYKOBEBIX CTOAYHUX BOJIH

B.B. Tapauos

Pacemotpenst  pefi(poBO-HOHHO3BYKOBEIE CTOAUME BOAHbLI B 3aMarHHYeHHOH HEOAHOPOAHOM
nnasMme. Y4TeHbl TpeXMepHbie >(dextsl aucnepcuu M BUXpeBOoH HemuHelHOCTH. C MOMOLIBIO TEOPHM
BO3MYLIEHHH, OCHOBAHHOM HAa MHOTOBPEMEHHOM (OpManu3Me, NOJIy4eHbl PeIUeHHs YPaBHEHHH MOMeH.
lloxasano, 4yrto BO BTOPOM HOpPAIKE MO AMIVIMTYAE CEKY/APHBIE CRAraEMble OTCYTCTBYIOT, a BO3MYILEHHS
OAHOPOJHLI B APeH(pOBOM HaNpaBleHHH.



