![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The development of the periodical distribution of point defects in binary semiconductors
V. V. Mykhaylovskyy
Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: An instability of the stationary uniform distribution of point defects in irradiated binary semiconductors is considered. This instability arises due to elastic interaction of point defects created by radiation. It was shown that the periodical distribution of point defects have to be developed in some cases. The area of existence and the parameters of this periodical distribution were estimated for GaAs.
References:1. Russell К. С. Phase stability under irradiation. Progress in Materials Science 28 (1984) 229. https://doi.org/10.1016/0079-6425(84)90001-X
2. Sugakov V. I. Lecturers in Synergetics (Singapore: World Scientific, 1998) 207 р. https://doi.org/10.1142/3813
3. Garner F. A., Brager H. R., Dodd R. A., Lauritzen T. Ion-induced spinodal-like decomposition of Fe-Ni-Cr invar alloys. Nucl. Instr. and Meth. Phys. Res. B 16 (1986) 244. https://doi.org/10.1016/0168-583X(86)90020-0
4. Russell К. С., Garner F. A. Thermal and irradiation-induced phase separation in Fe-Ni based invar-type alloys. Met. Trans. A 23 (1992) 1963. https://doi.org/10.1007/BF02647544
5. Khmelevskaya V. S., Malynkin V. G., Solovyev S. P. Nonequilibrium structures in irradiated metallic alloys. J. Nucl. Mater. 199 (1993) 214. https://doi.org/10.1016/0022-3115(93)90142-L
6. Хмелевская В. С., Малынкин В. Г. Диссипативные структуры в металлических материалах после облучения и других видов сильного воздействия. Материаловедение 2 (1998) 25.
7. Sugakov V. I. A superlattice of defect density in crystal under irradiation. Effect of Radiation on Materials. 14th Int. Symp. Philadelphia: American Society for Testing and Materials (1989) p. 510.
8. Сугаков В. И., Селищев П. А. Образование периодических диссипативных структур дефектов в легированных кристаллах под облучением. Физика твердого тела 28 (1986) 2921.
9. Михайловский В. В., Расселл К. С., Сугаков В. И. Образование сверхрешеток плотности дефектов в бинарных соединениях при ядерном облучении. Физика твердого тела 42 (2000) 471.
10. Mikhailovskiy V. V., Russell K. C., Sugakov V. I. Time and space instabilities in binary alloys at phase transitions under irradiation. Microstructural Processes in Irradiated Materials, November 30 - December 4, 1998, Boston. Materials Research Society (1999) p. 667.
11. Винецкий В. Л., Холодарь Г. А. Радиационная физика полупроводников (Київ: Наук. думка, 1979) 336 с.
12. Banerjee S., Urban K. Kinetics of Order-Disorder Transformation in Alloys under Electron Irradiation. phys. stat. sol. (a) 81 (1984) 145. https://doi.org/10.1002/pssa.2210810114
13. Mattila T., Nieminen R. M. Direct Antisite Formation in Electron Irradiation of GaAs. Phys. Rev. Lett. 74 (1995) 2721. https://doi.org/10.1103/PhysRevLett.74.2721
14. Сакалас А., Янушкявичюс З. Точечные дефекты в полупроводниковых соединениях (Вильнюс: Мокслас, 1988) 156 с.
15. Бублик В. Т., Мильвидский М. Г. Собственные точечные дефекты, нестехиометрия и микродефекты в соединениях АIIIВV. Материаловедение 1 (1997) 21.
16. Zhang S. B., Northrup J. E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67 (1991) 2339. https://doi.org/10.1103/PhysRevLett.67.2339
17. Seong H., Lewis L. J. Tight-binding molecular-dynamics study of point defects in GaAs. Phys. Rev. B 52 (1995) 5675. https://doi.org/10.1103/PhysRevB.52.5675
18. Лейбфрид Г., Бройер Н. Точечные дефекты в металлах. Введение в теорию (Москва: Мир, 1981) 440 с.
19. Conrad D., Scheerschmidt K. Empirical bond-order potential for semiconductors. Phys. Rev. B 58 (1998) 4538. https://doi.org/10.1103/PhysRevB.58.4538