![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Dipole excitations in an asymmetric nuclear Fermi-gas
V. I. Abrosimov, O. I. Davidovskaya
Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: Dipole excitations of a neutron-proton finite Fermi gas are considered within a semiclassical approach based on the kinetic equation. The independent-particle dipole strength functions connected with the external fields, which are exploited in quantum random phase approximation approaches for studying the isoscalar and isovector resonances in nuclei, are found.
References:1. Clark H. et al. Nucl. Phys. A 649 (1999) 57. https://doi.org/10.1016/S0375-9474(99)00039-1
2. Youngblood D. H. et al. Phys. Rev. Lett. 82 (1999) 691. https://doi.org/10.1103/PhysRevLett.82.691
3. Abrosimov V. I., Di Toro M., and Strutinsky V. M. Kinetic equation for collective modes of Fermi system with free surface. Nucl. Phys. A 562 (1993) 41. https://doi.org/10.1016/0375-9474(93)90031-R
4. Abrosimov V. I., Davidovskaja O. I., Kolomiets V. M. and Shlomo S. Free surface response in a finite Fermi system. Phys. Rev. C 57 (1998) 2342. https://doi.org/10.1103/PhysRevC.57.2342
5. Abrosimov V. I. Monopole vibrations in asymmetric nuclei: A Fermi liquid approach. Nucl. Phys. A 662 (2000) 93. https://doi.org/10.1016/S0375-9474(99)00401-7
6. Bohr A. and Mottelson B. R. Nuclear Structure (New York: Benjamin, 1975) Vol. 2.
7. Hamamoto I., Sagawa H., and Zhang X. Z. Phys. Rev. C 57 (1998) R1064(R). https://doi.org/10.1103/PhysRevC.57.R1064
8. Van Giai N. and Sagawa H. Monopole and dipole compression modes in nuclei. Nucl. Phys. A 371 (1981) 1. https://doi.org/10.1016/0375-9474(81)90741-7
9. Brink D. M., Dellafiore A., and Di Toro M. Solution of the Vlasov equation for collective modes in nuclei. Nucl. Phys. A 456 (1986) 205. https://doi.org/10.1016/0375-9474(86)90390-8
10. Ring P. and Schuck P. The Nuclear Many-Body Problem (Springer, 1980).