SAAEPHA ®I3HUKA

YIAK 539.17

RESPONSE OF ELECTRONIC SURFACE IN METAL CLUSTERS WITHIN A
PHASE SPACE APPROACH

V.I. Abrosimov, V.M.Kolomietz, V.A.Plujko

The surface vibrations of the valence electrons in spherical alkali-metal clusters are studied within
a phase space approach which is based on the Landau-Vlasov kinetic equation. The linear response
theory is used. The proposed method allows for the analysis of the contribution of the electron orbits
with different angular momentum into the strength function. The strength function for the electronic
surface vibrations is investigated. Applications to the dipole collective excitations in sodium clusters
are presented. We reproduce both the surface and volume branches of the dipole resonance. The
analysis is carried out for the electron-electron collision integral taking into account the retardation
effects. Enhancement of the two-electrons scattering rate in two orders of magnitude due to the

memory effects is shown.

In recent years collective resonances and response properties of electrons in metal clusters
are the subjects of wide investigations ({1-4] and references therein). Many experimental results
have been explained within the framework of the jellium model. This model belongs to the
class of mean- fields models. In the jellium model the valence electrons are assumed to move in
a self- consistent field formed by the ions of cluster. The microscopic framework for description
of the collective resonances with high frequencies within mean- field theory are the theories lile
random- phase approximation (RPA) [5-7]. However the calculations based on such microscopic
approaches, in particular for large clusters, are greatly time- consuming. There are semiclassical
models of description of multipole vibration in clusters. The semiclassical extention of the RPA
sum- rule approach was sucessfully used in [3,4,8] for estimations of the position and width of
the collective resonances. A semiclassical theory of linear response based on the Vlasov- Landau
kinetic equation for a Fermi- gas with an effective coordinate dependent residual interaction
was applied in [9-10] to the study of surface oscillations and photoabsorption in small metal
spheres.

Semiclassical methods seem to be the most suitable for the investigation of properties of the
multiparticle systems. They allow to obtain analytical results and due to this to study average
properties of the systems in a transparent way. It should be mentioned that as in RPA, a mean-
field formed by all particles is also incorporated in the Vlasov- Landau transport equation.
Moreover, this kinetic approach is very suitable for description of damping of collective modes.
A semiclassical dynamics like Landau-Vlasov includes the Landau damping (the fragmentation)
as well as the particle scatterings. Thus in this approach electron- electron and electron- ion
collisions can be taken into account to include their associated collision integrals to the kinetic
equation.

The dynamical phenomena in finite Fermi systems related with different branches of physics
have an instructive similarities. It was pointed out in ref. [1,3], that there is an analogy between
the two physical types of dipole collective resonances in small metal clusters and the nature of
nuclear giant isovector dipole resonance. The study of this nuclear resonance carried out within
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a hydrodynamical description in ref. [11] led to conclusion that it is a suitable combination of
two collective modes: a compressional one proposed by Migdal [12] and by von Steinwedel and
Jensen (MSJ) [13], and a purely translational one proposed by Goldhaber and Teller (GT) [14].
The GT mode is similar to the surface oscillations of the valence electrons in a metal cluster,
whereas the MSJ mode is analogous of the volume plasmon. '

For studying the collective modes related with excitations in the surface region of a system
it is convenient to use explicitly macroscopic collective variables describing the displacement
of the effective surface of a system from its equilibrium position. Such description (the Fermi
liquid drop model for a small vibrations) has been formulated within the phase space approach
in ref.[15] and recently it was employed to study the multipole vibrations of nuclear surface
[16]. In the present paper we consider the strength distribution of electronic surface vibrations
in metal clusters around a spherical equilibrium shape by extending the phase space approach
proposed in [15,16].

In Sect.1 we find the surface response function of valence electrons system in alkali cluster to
a periodic external force. In Sect.2 we extend our model to include collisional effects. We obtain
expression for the relaxation time due to electron- electron scattering as function of frequency
of the collective mode and temperature. In Sect.3 we look at the properties of imaginary
part of dipole response function (the dipole strength function) for the sodium clusters. To
understand the nature of the collective modes we give an analysis of the partial contribution of
electron orbits with different angular momentum into the strength function. Finally, our study
is concluded in Sect.4.

1. Surface response of cluster valence electrons

We will assume that the electrons in a metal cluster behave like a Fermi liquid (an interacting

Fermi gas) bound by the surface
r=R+IR(D,p,t), (1)

which is the sphere with radius R in equilibrium. The radius R is related with the number ¥ of
valence electrons in the cluster by R = r,N'/°, where r, is the Wigner-Seitz parameter, which
characterizes the metal. The macroscopic variable § (1, p, 1) describes the local displacement
of the electronic surface R(¥,,t) from its equilibrium position.

A change in R induces motion of the electrons inside the sphere. The latter can be repre-
sented by a variation of the distribution function én(7, p,t) in the phase space. The equation
of motion for én (7, p,¢) is given by a linearized Vlasov- Landau equation [17]

z [
9 n(i 50) + 5 [6n(r=; 7.0 S0 [ a5 F g 5 0| = TR (2)
Here ¢ = p/m and J[én(F,p,t)] is the linearized collision integral, see Sect.3. The am-
plitude F(7, 77", p’) describes the interactions of the electrons in the cluster. Below to study
the surface response of electronic system we neglect in eq. (2) the deviation the self-consistent
potential in the bulk of the system by putting F (7, p;7’,5’) = 0. The possibility of the descrip-
tion of collective excitations will be achieved by suitable choice of the boundary conditions.
Following [15] the equation (2), valid inside a system at r < R, is accomplished by ”mirror
reflection” boundary conditions at the moving surface (1)

s _— . dng 0
[5?1 (T-: PJ.:P:—:":) i 51’2(?”? Py, _prwt)] !r:R = —Jpr—ggq-g;é‘R(ﬂ, ¥y t):\ (3)
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where p, is the radial momentum and 71 = (0,ps, Py)-
An essential property of a finite Fermi system having a free surface is that the motion of

the surface should be consistent with the motion of the particles inside the system. This can
be achieved by means of the following ”subsidiary condition”:

P”'(Fat) PS(G:‘F’a t)+ Fb(ﬁrﬁovt)' (4)

r=R+SR(9,pt)

Here P,.(7,t) is the normal component of the momentum flux tensor Pi(F,t), see e.g. [17],

Ch.1, .
Pa(,t) = [ 75 pive 6n(75,1),

This component describes the forces acting on the electronic moving surface inside of the
system, in particular,it is connected with compression of the electron density. The additional
pressure Ps(1, @,t) caused by the resistance against the displacement of the effective surface of
the electrons distribution from the equilibrium one. We assume that Ps(?,¢,1) is related with
the corresponding part of the electronic surface energy in the same way as in droplet model
[11]. It can be written as

Q
PS(gﬂ 12) t) = QTTT'ERz JR(TQ? ¥ t)
Here () is the stiffness coefficient against the electronic surface displacement. To estimate this
coefficient we will assume that it is proportional to the symmetry energy one J (@ = aJ) as
it was found in the nuclear case [11] (where @ ~ 0.5). Then by means of the formula for total
energy of a charged metalic cluster with N atoms and Z valence electrons [4] we can find from

the energy term proportional to (Z — N )2 the symmetry energy coefficient in metal clusters as

e? 14.3987

- - /
T N3 T NP & (5)

J

where e is the electron charge.

In eq.(4) we have also involved an external pressure Fr(d,p,t). This has been done simply
to enable us identify later the response of the system to such an external source and thus to
benefit from the tools of linear response theory. For the present study, the Fr(d, ¢, t) is chosen
in the following form

Fi(d,¢,t) = %FLM(w)YLM(ﬁ,@) cos (wt) exp (nt) (6)

with n = +0 representing an infinitesimally small quantity to guaranty that the external field
is turned on adiabatically at t = —oo.
To find solutions of (2)-(3) it is convenient to change variables (7, ) to a new set of variables

(r,¢,1, a0, 8,7) as proposed in [18],
(F>ﬁ) = (T’, EJ"!B a’ﬁ,’y) (?)

The new variables are particle energy ¢ = €, particle angular momentum [ = |7 X 7 |, radius
r and Euler angles (o, 8,7). The Euler angles are defined by the rotation of the laboratory
frame (z,y,2) to (z',y',2') with :;:" along 'and §' along 7. Now the distributions of particles
with positive radial velocities dn™(r,¢,l,a,3,7,t) and with negative ones (e L, % t)
are considered separately.
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Of interest are those solutions of egs. (2)-(3) which are consistent to the special form of the
external pressure (6). Thus we may write : :

SRL(V,p,t) = Rﬂ[% S Rpp(w)Yom (9, ) exp(—iwt)] . (8)

In terms of the new variables (7) these solutions can be written as

SR1(9,9,t) = Rel Y- 6Ruaa(w0)¥in (5, 5)(Dhn(e, B,7))" exp(—iwt)] ©)

m
M,N 2

where we used the following expansion:

L

YLM(TE': {P) = N;L (D:‘[;JN(Q'! rg} 7))* YLN(

!

) (10)

g I

El

8o

For the én(7,p,t) we seek for D-functions expansion of the form:

-y dn ‘.
dn. (7, p,1) = —d—ﬁgRBIZ[fﬁ,LM(?HEJ:WJ i fN,L-M(?'?thW)]-X
M.N

L ® x N

x(Dyrn(e, 8,7))" exp(—iwt)]. (11)

Functions f*(r,¢,l,w) represent a change of the local energy for particles with angular
momentum [ at the distance r from the centre of the system. They describe the Fermi surface

distortions.

Using in eq. (2) the new variables (7) and taking into account the expansion (11) for
§ni (7,7, 1) we obtain a system of the differential equations over r for the functions f*. Their
solution is found to be:

F i o o explxi(wT(r, 6, {) — N v(r,¢1))]
L sin[(1/2)(w T'(R, &,1) — NT(R, ¢,1))]

Tom
YLN(§=§)X

xwp(R,¢,1) SRy (w). (12)

Here p(r,¢,l) = mo(r,¢,1), where
o(rred) = (2fm)(e — B/(mr)] (1)

B 1
rrel) = [ dr e (14)
S
yrel) = [ dr =TT (15)
(R, 6 d) = 27(B,81) (16)
and

T(R, & 1) =29 R, el (17)

We may now present the solutions (9) in terms of response function xr(w). The latter may
be defined as :
SRim(w)/R = —xu(w) Frm(w). (18)
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With the help of (4) the response function xz(w) is found to be:

oy
L .
XL(w) = |: th(w} 27TT§ PDR ¥ (]‘9)

Here x%,(w) is the so-called internal response function [17] given by

60r wR & v
xils — L
1 :
x/ dAA (1 — )\Q]ctg[ﬁf—i(l — AYM2 o N arccos A). (20)
0 vF

In eq.(20) the equilibrium pressure of the Fermi gas Fo = (2/5)erpo and the dimensionless
electron angular momentum A = [/(ppR) are introduced. In (19) the additional pressure
Ps(9,p,t) , see (4), is used in the form (5).

The poles of the function (19) determine the eigenfrequencies of the collective oscillations
in electronic system. In the section 4 we will study the properties of the imaginary part of the
response function (19) for the dipole vibrations of the alkali clusters.

2. The inclusion of collisions

For small deviations from a Fermi sphere the two- electron collision integral J. in (2) is the
linearized collision integral of the form [19]

dpydpsdy. T t—T
e ET)= f —?E;{;)—?/‘dﬁ/_w dcexp{a(—ﬁl} (21)

w({ b (7, DNQUA (P DD P TS B 7B, @ = +0,

which takes into account the retardation (memory) effects, i.e. this collision integral at the
instant of time T is formed by particle interactions at all preceding instant of time ¢. De-
parture of particles from one-particle states at the instant ¢ is determined by the probability
w({p}, {n;(7,t)}) of electron collisions and the balance of populations Q({n;(t)}) of one-
particle states:

Q({n_?}) = M NaNgNg — T1NaNl3ally, n= (1 o TE), (22)
where n; = n(p;,7), n = n(p, 7). The quantity

1

5 Yo BT
P(ts T; Ff) ry { _t?}) i (2?!’.?'3)4 Ll {g[]t dt!A‘f(F1 tr) - Aﬁ(??_ F)]}’ (23)

determines the relative contribution of particles that do not undergo additional collisions during
the time interval from t to T; AF = p) + P2 — Ps — Pa,, Oe = €1 + €3 — €3 — €4, where ¢; =
¢(;,7,t) is the self- consistent single- particle energy. The factor exp[—a (T —t)/k)]in Eq. (21)
explicity takes into account the principle of weakening of initial correlations. The probability
w({p}, {n;(i",1)}) of particle scattering at the point 7" can depends on the distribution function
due to dynamical polarisability of the electron medium [20-22]. It means that the probability w
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will be the frequency- dependent w = w,,, when nonequilibrium component of the distribution

function varies in time according to the harmonic law 8 f ~ exp[—iwt)].
In the general case, the total dynamic part of this collision integral consists of three terms

J. = 88ty + 65t + 65ty | (24)

The first term 85S¢, is connected with the variation of the distribution function én. The second
one §5t, is governed by a variation of the mean field. The third term 65t, results from the
screening effect for the free two-body scattering in hot Fermi system due to high frequency
collective vibrations. In the range of low frequency kg1 >> hw, where kg is the Boltzmann
constant, the term 691, is zero. At present the term d5t, is rather poorly studied in kinetic
theory.

As discussed in Refs. [23-25], instead of Eq. (21) we can use as a good approximation
simplified collision integal within the relaxation time a,pproximation of the following form

Te

for the calculation of the damping properties of collective vibrations in Fermi- liquid. Here
operator B provides for satysfying of the momentum and energy conservation laws [26-28]:
Bén = (én)lp + (6n)|,, where (dn)|; is the dynamical component of a distribution function
in the case of the deformation of the Fermi surface with the multipolarity {. lgnoring term
Bdn, we have an expression for the collision integral commonly used in the relaxation time
approximation

Jin) = BOEL, (26)

Te

The collective relaxation time 7. is frequency and temperature dependent 7, = 7.(w,1"). The
frequency dependence of 7. is due to the retardation effects in the collision integral. The
dependence on temperature results from a smeared out behavior of the equilibrium distribution
function near the Fermi momentum [23-25].

Strictly speaking, a physical interpretation of the quantity 7. in Egs. (25), (26) depends
on the value (wr.) [23,24]. Specifically, in the regime of rare collisions (w7, > 1) the time
(te = 7)) is a collective relaxation time in the case of the deformation of the Fermi surface
with very large multipolarity. In the regime of frequent collisions (w7, <« 1) the quantity
(1. = 7)) is the relaxation time in the case of a quadrupole deformation of the Fermi surface.

The magnitudes of 7(") and 7{/) differ by the factor of dp (7{") = dyr!/)) which is equal to
[25]

dy =< wd; >/ < w >, (27)
where w is the probability of scattering of nucleons near the Fermi surface; the function @,
defines the angular constraints for nucleon’s scattering within the distorted layers of the Fermi
surface with quadrupole multipolarity and brackets denote the averaging over angles which
determined by the momentum of the colliding particles. If the probability w of the two- particles
scattering is isotropic than a magnitude of d; is equal to 4/5=0.8. In fact, this value d; defines
the accuracy of using Eq. (25) as the two- body collision integral irrespective of the rate of
two-body collisions.

The quantity /) is the relaxation time for the total number of collisions

N(p) = /D ~ 854(p, e,)de, (28)
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in the direction p = p/p in a unit time. The time 7{/) is also the relaxation time for viscosity
in the regime of fast collisions [23-29]. Due to the Landau’s prescription [32] (see also [25-
27] and the references therein) for calculation the coefficient of absorption of high- frequency
vibrations (zero sound) in a Fermi liquid, the temperature and frequency dependence of i)
will be proportional to the function

] +00 400 +oo 00
Y(w,T) = _fo deg,lfo deg 2 f£ dfg_g] dep,a (29)

0

Q{nog})d (€0 + €02 — €03 — €40 + w)6/(hw(ksT)?).
Using the standard method of calculating integrals over the momenta in Fermi liquids we obtain
from (21) -(24), (28) the following expression for the relaxation time for collective motion at low
frequency kg1 >> hw ( the thermal relaxation time) in the case of a quadrupole deformation
of the Fermi surface [25]

#(T)/kh = a(ksT) 7%, [kgT, e in eV], (30)
where the quantity o
a =127 /(h(m" [R*)P < w >) = 5u?/(4rpvso). (31)

This expression is valid at low temperatures kg7’ < u, where u is the chemical potential,
u = ep for kgT < ep. In Eq. (31) m” is the effective electron mass, o is the spin averaged
clectron - electron cross section, p is the density of electrons, vr is the velocity of Fermi. We
used also the value 4/5 for dy (see (27). The relaxation time for collective motion at arbitrary
frequency (7{)(w, ") is obtained after devision of the thermal time (30) by the function U (29).
As a result we have

1 1 1 3

eiRY t = = ——U(w,T), 32
(W, T) 7w, T) 7w, T)d 47(T) et (32)

[n the case of low temperatures and frequences in comparison with the chemical potential(
kT, hw < ) the function ¥ (29) is equal to

W(w,T) = 1 + (hw/(2rksT))>. (33)

The equations (32), (33) lead to Landau’s result [30] for the coefficient of absorption of zero
sound in the high - frequency limit.

Note that the sitation fiw < j can be achieved at collective motion in liquid helium [27] and
nuclear matter [25]. In the discussed case of plasmon vibration in metalic clusters the energies
of collective vibrations and the Fermi energy have almost the same values fiw ~ p = ep (3,20].
In this situation the expression (33) should be modified. Using the result for the energy integral
in (29) from [31}, we have, when hw ~ u = ep

W, T) & (1 + (heo/ ks D))/ (1+ (o) (1 + 2(kaT 1)), (34)

The relaxation time for collective motion at arbitrary frequency can be obtained by combining
Egs. (30) -(32) and (34)
1 5m? 9 - 1 5 ! g 4
—((Aw)* + (2rksT))/(L + 5 (ao/p)* /(L +2(ksT /1)) (35)

Te(w, 1) ~
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Note that in large range of temperatures the leading contribution to two- electron collision rate

b
7. (w F)

is defined by the frequency -dependent component of this time. For example, the energies of
the dipole Mie resonances in Na clusters are more than 3 eV [8] and value of (27kpT') at boiling
point of the water is approximately equal to 0,2 eV. Therefore the frequency contribution to
the collision rate is more than thermal one by a factor of ~ (3/0.2) ~ 2-102.

It should be pointed out that adoption of the relaxation time approximation of form (26) as
the collision integral in the kinetic Eq. (2) is formally equivalent (for small damping vibrations)
to using of the collisionless Vlasov -Landau equation with finite value of imaginary part of

frequency

Ve =

1

Te

w=w=—in, nN= (36)

3. Dipole strength distribution for sodium clusters

The strength distribution of the multipole vibrations in a electronic system as a function
of the external pressure frequency, see (6), is described by the imaginary part of the collective
response function (19). Note that the electron angular momentum A can be treated either
as a continuous or discrete variable [18]. To obtain the collective response function (19) with
the electron angular momentum treated as a discrete variable we replace the integration over
angular momentum in (20) with sum over discrete values using the semiclassical prescription
(32]:

(kg)s (37)

and
CdAA ( B YRl
L ) + =} 38
fU PFR) 1=0 ( 2) (3)
where the maximum integer value of electron angular momentum lnas 18 such that A(1+1/2) <
prR. Taking into account eqs.(37) and (38) the function (20) can be written as

60 wh 1 L P
l.i" ) e s . e E Y Il = =
Xint(f&) 2L+]. U}i' (k}"R)Z j\‘r:_bl Lf\(: 1 2)] X

lmaz
X Z b+
xctg [%;};’\/1 T 11+ 1)/ (ke R)? — N arccos \/I(L + 1)/(1@‘3)2] , (39)

Now we apply the presented above approach to the dipole excitations (L = 1 in (19),(20)) in
spherical sodium clusters. In the calculations the Wigner-Seitz radius r, was equal to rs = 2.25A

[33]. The electron density is

L) [t = 00 + 1)/ (ke BY?] X

&

3

A= 4rrd’

(40)
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We use the standard formula [20] for the Fermi energy for the alkali

P po\ =2
ep = = = 50.1 (—) eV, (41)
2m ag

where m is electron mass and ao is the Bohr radius. The stiffness coefficient of surface
displacement () was chosen to be equal to 10% of the value J given by (5). The dependence of
the results on this parameter is rather weak when @ varies in the interval 10% — 30% of the
value J. Our results have been obtained by smearing out the §—functions in the imaginary part
of (19) at a finite value of the infinitesimal parameter n = 0.05eV/, see (6). The finite width »
simulates some collisional effects. It is equal to the inverse relaxation time if the collision term
in eq.(2) was taken into account in a relaxation time approximation, see Sect. 3. The value

= (.05¢V corresponds to the value ~ 10™"sec for the relaxation time.

1204
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Fig. 1. The imaginary part of the response function for the dipole excitations in the “Na:
a — intrinsic, see (39); b — collective, see (19). The electron angular momentum is treated
as discrete variable (solid line) and as continuous one (dotted line). The averaging
parameter n = 0.05 eV. The response functions are shown in Py units, see text.
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First we consider the dipole strength distribution for the **Na. In Fig.1 the imaginary part
of the intrinsic response function (20) (Fig.la) and the collective one (19) (Fig.1b) are shown.
A comparison of Fig.1a and Fig.1b shows that due to the consistency condition (4) one observes
the essential strength redistribution. The most of the strength is distributed near the energy
of the classical Mie surface plasmon, which lies at Awp = 3.4eV/. The centroid of the strength
distribution is redshifted with respect to fwys. There is the strength distribution in the region
of the volume plasmon energy amounted to Aw, = 5.8¢V. The large fragmentation of the
strength is found for the collective dipole excitations. This result is in qualitative agreement
with the experimental data [34] for *°Na, which display a broad distribution beginning with
2.4eV.

It might be of interest to study the nature of the dipole excitations in the energy regions
where the most of the strength was found. Using Eqs. (19) and (20), we can analyse of the
partial contribution of the electron orbits with different angular momentum into the strength
function. In Fig.2 the dependence of the energy averaging dipole response function for the ONg
on the electron angular momentum is shown. The energy averaging dipole response function is
difened as

" 1 w2 "
< () >=———  dwx; (L,w).
Wy — Wz Juy

The maximum integer value of the electron angular momentum for **Na amounts to lya. = 6.
In Fig.2a we can see that the excitations have rather the surface character in the energy region
of the Mie surface plasmon. However the excitations exhibit a certain superposition both the
surface mode and the volume one at the energies near the volume plasmon. Note that the
results shown in Fig.2 do not depend on the version, in which the electron angular momentum
is treated: as a continuous or discrete variable.

Finally in Fig.3 the results are given for the dipole vibrations in the spherical sodium
clusters **Na and **°Na. The increase of the fragmentation is observe as well as the shift of
the strength to the low-frequency excitations with increasing of cluster size.

4., Conclusions

We have presented a phase-space approach for the study of multipole collective excitations
of the valence electrons in metal clusters within the jellium model. In the case of a gas of valence
electrons confined to a sphere with moving surface we have derived the analitical expression for
the collective response function, see (19). Introducing the moving effective surface for electronic
system in clusters and moreover taking into account the forces which arise at displacement of
the electronic surface with respect to the ionic one, see (4), we include in a macroscopic way
an electronic interactions in the surface region.

It is found in our semiclassical model that the strength of small spherical metal clusters is
localized in two energy regions. Moreover the analysis of the contribution of the electron orbits
with different angular momentum into the strength function shows that these two regions are
related with the surfase and volume branches of the dipole resonance in *Na, see Fig.2.

The results reflect the fragmentation of the dipole collective strength in clusters due to the
coupling both surface and volume collective modes with the single-particle excitations (Landau
damping), see Fig.1,3. Found results are in reasonable agreement with the quantum ones
obtained recently within the so called generalized vibrating potential model [6].
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Our strength distribution is characterized with larger fragmentation as compared to the one
found in the quantum calculations. This may be connected with the surface character of the
external pressure form factor, see (6), used in the present approach.

As a first step we have taken into account the effects of the electron-electron collisions. The
detail analysis was carried out for the electron-electron collision integral. It is used in the form
taking into account the retardation effects caused by the time dependence of the mean field. We
shown that for the collective vibrations in large range of temperatures the thermal component
of the two- body collision rate is much less than the frequency -dependent one.

The present approach can be modified to account for correlation effects due to coupling of
the valence electrons motion to that of the ions as well as to study a gas of non-zero temperature
electrons bound by the moving effective surface. This method can be also applied to calculate
the dipole strengths in heated and cold Fermi systems for processes of the gamma-decay as
well as photoabsorption in a unified way using general relation between radiative strengths and
linear response function [36,37].

The reported work was partially supported by the International Atomic Energy Agency
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BIAI'YK EJIEKTPOHHOI IIOBEPXHI METAJIEBUX KJIACTEPIB: IILIXIIJ
HA OCHOBI JMUHAMIKH ¥ ®A30BOMY IMPOCTOPI

B.1.A6pocivos, B.M.Kosomieus, B.A . ILmoiko

BUBYAIOTHCH NOBePXHEBI KOMMBAHHS BAJICHTHUX €JIEKTPOHIB y CEPUYHMX aJIKOJIOTHHX MeTaJle-
BUX KJIACTEpaX 3a JOMOMOLOK miaxeiy y dazoBomy npocTopi, mo 6a3yeTcs Ha KIHETHUHOMY piBHsHHI
Buacosa — Jlanaay. Bukopucrano Teopir JiHifiHOro Biaryxy. OBuuciieHO cUJIOBY (hYHKLIIO KOJM-
BaHb eJeKTPOHHO! nosepxHi. PoarisiHyTo aunosibHi KonekTusHi 30y KeHHA Y CONOBUX K/acTepax.
BiarBopeHo sk MoBepXHeBY, Tak 1 06’eMHY KOMIIOHEHTH [JUIOIbHUX 30ylkKeHb. AHaJi3 BUKOHAHO
3 IHTErpaJioM 3iTKHEHb MK €JIeKTPOHAMM, IO BPAXOBYE eeKIH 3alli3HI0BaHHI. [TpoaemoncTpo-
BaHO MIABMIIEHHS [BMAKOCTI pO3CIAHHS eJIeKTPOHIB IpW BKIKNYeHHI edekTiB mam’sati B iHTerpaJi

3iTKHEHb.

OTKJIMK YJIEKTPOHHOM IIOBEPXHOCTU METAJVIMYECKUX
KJIACTEPOB: II0JIXO0J HA OCHOBE JVMHAMMWKW B PA30BOM
INPOCTPAHCTBE

B.U1.A6pocumos, B.M.Kosomuen, B.A.ILmoiiko

V3y4aioTcs NOBEPXHOCTHbIE KOJieOaHus Ba/leHTHUX 9/1€KTPOHOB B cheprHecKuX MEeJ0YHbIX Me-
TaJUIMYECKUX K/JacTepaX B paMKax JUHaMUK4 B (Pa30BOM IPOCTPAHCTBE, KOTOpas OCHOBBIBAETCS Ha
KNHETHYecKoM ypasHeHuu Butacopa — Jlanjay. Vcnosnb3yercs Teopust JiHelHOro oTKJuKa. Mecie-
[0BaHa CUAOBasl PYHKUMS VIS KOJIeBaHWA DJIeKTPOHHOM IOBEPXHOCTH. PacCMOTPeHbl AUNOJIbHbIE
KOJLIEKTUBHBIE BO3BYKIeH!s! B HATpUeBLIX KiacTepaX. [losyuyeHsl Kak I0OBEPXHOCTHAs, Tak U 0Db-
BMHafA KOMIIOHEHThI JAMNIOJBLHOTO pesoHaHca. [IpoBelieH aHas M3 3JE€KTPOH-3JIEKTPOHHOIO HHTET paJia
CTOJIKHOBEHMI, KOTODbIA y4uTbiBaeT >(QQexTsl 3ana3ablBaHnsd. [Toxazano, 4rTo BKJIIOUYEHHEe B WH-
TerpaJi CTOJIKHOBeHU 3POeKToB NaMATH IPUBOAUT K YCHJIEHUIO CKOPOCTH 9JIEKTPOH-3/1eKTPOHHOIO

paccesHus.
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